

J2EE client-server platform delivering
integrated IP and EDA solutions

for power and performance critical digital systems

Robert Graham

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Thesis submitted for the degree of Master of Science

 by Research 2005
 (part-time)

The University of Edinburgh

Abstract
The commercial world of digital circuit design is a highly competitive environment.
Speak to the CEO of any company in this field, or in fact almost any industry for that
matter, and they will openly validate that the critical keys to success are minimising
costs while ensuring fast-time-to-market. If the overhead costs associated with
developing a product are in excess of the revenues generated from that product, a
business will not survive. However, going overboard on cost-cutting will have a
negative impact on time-to-market due to lack of resources, hence a strategic balance
between these must be sought.

This thesis explores the potential of a novel means of providing remote access to both
intellectual property (IP) macro-components and EDA tool suites. To this end a web
enabled J2EE client-server based EDA and IP portal type platform has been designed
and developed. Through a dedicated integrated development environment
incorporating schematic capture technology, engineers can download and plug
together virtual instances of state-of-the-art digital IP cores. After creating a virtual
design it can be functionally verified and synthesised using packages from a range of
server-side EDA tools.

This approach has several key benefits. Firstly development timescales can be
radically shortened as the framework is architected around libraries of highly
optimised macro-components that can be rapidly plugged together to form complex
digital systems. SoC’s derived from these macro-components will be inherently low-
power, reducing the need for designers to have in-depth experience in algorithmic low
power techniques. Secondly the architecture of this framework allows seamless and
transparent design capabilities incorporating these IPs, followed by RTL level
verification without users ever having direct access to the RTL. This maintains the
security of the intellectual property invested in the macro-component libraries without
compromising design performance. Finally client users of the framework have access
to EDA tool suites without directly incurring their acquisitioning and licensing costs.
Accessing these tools as a web service will help to mitigate some of the overhead
costs of digital system design. Ideally this will lead to a low cost of ownership
solution well suited to SME’s, allowing them to operate and succeed in the highly
competitive SoC market place.

 i

Declaration of originality
I declare that this thesis and all work described herein is my own work, with the
following exceptions:

Figure 1-3 is based upon a figure in [14].

Student Signature:

Student Name: Robert Ian Graham

Principal supervisor: Prof. Tughrul Arslan

Second supervisor: Dr. Alister Hamilton

 ii

Acknowledgements
As anyone engaging in state-of-the-art technology research projects will only be too
aware, the quest for innovative and novel solutions is a daunting task for any one
person to undertake single-handed. Hence there are several people that I would like
to pay homage to for their contributions of time and effort in helping me along the
way.

Firstly I’d like to show my appreciation to my supervisor, Tughrul Arslan.

Secondly I would also like to voice my appreciation to others that contributed towards,
supported and guided this project. A great deal of hardware development support was
provided by Ahmet Erdogan, a true expert in the field of digital system design. Much
of the research in this thesis is focused towards the needs of small businesses
operating with limited budgets. A great insight into the business and working
practices of these small enterprises was provided by Andrew Sijan.

There are several other people I would like to acknowledge for their indirect support
and guidance. These are Matthew Lawrenson, Gordon Stuart and David Walton, the
directors of Spiral Gateway for showing me that life has uncertainties – but that these
can progress to better opportunities. They have given me invaluable experience for
which I am grateful.

I would like to give huge thanks to Ruth Moore. She is a very special person who was
able to provide inspiration, emotional guidance and support at the times when I really
needed it. Her love and caring meant everything to me, helping me to focus and
ultimately become who I am now.

Finally I would like to take this opportunity to give a special mention to Yutian Zhao.
She has provided fantastic support and comfort throughout the time I have known her.
Her amazing character and personality always lifts my spirits when I’m feeling down.
Hopefully she will continue to provide this through a life-long bond and partnership.

Key words
Low power, macro-component, IP, IP Libraries, IP Cores, SIP, virtual components,,

schematic capture, java, J2EE, EJB, CORBA, design patterns, internet, design

services, EDA, SoC, ASIC, algorithmic optimisation, SME.

 iii

Table of contents
ABSTRACT .. I

DECLARATION OF ORIGINALITY..II

ACKNOWLEDGEMENTS .. III

KEY WORDS .. III

TABLE OF CONTENTS .. IV

TABLE OF FIGURES ...VII

TABLE OF TABLES ... VIII

ABBREVIATIONS ... IX

LEGAL ISSUES ..X

REFERENCES ...97

APPENDIX A JAVA SOURCE FILES ...104

APPENDIX B: MYSQL DATABASE CREATION SCRIPT ...109

APPENDIX C: EXAMPLE SYNTHESIS SCRIPT...112

APPENDIX D: 3RD PARTY SOFTWARE LICENSES ...114

CHAPTER 1 INTRODUCTION ...1

1.1 INSPIRATION ...4
1.2 OBJECTIVES ..5
1.3 INTELLECTUAL PROPERTY LIBRARY..5

1.3.1 Reusability ..6
1.3.2 Parameterisability ..6
1.3.3 Inherent low power characteristics ..7
1.3.4 Technology independent ...8
1.3.5 Tool flow independent ..9
1.3.6 Constructing an IP from macro-components..9
1.3.7 Macro-Libraries ...10

1.3.7.1 Foundation ... 11
1.3.7.2 Signal processing.. 11
1.3.7.3 Communications .. 11
1.3.7.4 Image processing.. 11
1.3.7.5 Cache libraries.. 11

1.3.8 Design Flow..12
1.4 ELECTRONIC DESIGN AUTOMATION – EDA ..14
1.5 REMOTE IP AND EDA SERVICES ...15

1.5.1 Remote IP access ..15
1.5.2 Remote EDA access ..16
1.5.3 IP & EDA development framework ..17

1.6 SUMMARY...18

CHAPTER 2 CLIENT-SERVER ARCHITECTURE ...19

2.1 PROGRAMMING LANGUAGE ..20
2.2 APPLICATION SERVER ...21
2.3 BACKEND DATABASE..23
2.4 CAD TOOLS ..24
2.5 DEPLOYMENT ...24

 iv

2.5.1 Hosting ...24
2.5.2 Client application ...25

2.6 SUMMARY...27

CHAPTER 3 PREREQUISITES ...28

3.1 DESIGN PATTERNS ..28
3.1.1 Façade design pattern ..28

3.1.1.1 Stand-alone client application .. 30
3.1.2 Observer design pattern and model-view-controller ..30
3.1.3 Singleton design pattern ...31
3.1.4 Factory design pattern..32

3.2 SERIALIZATION ...32
3.3 ENTERPRISE JAVA BEANS (EJB) ...33

3.3.1 Entity EJB...33
3.3.1.1 Container managed persistence (CMP) .. 33
3.3.1.2 Bean managed persistence (BMP).. 33

3.3.2 Session EJB ..34
3.3.2.1 Stateless.. 34
3.3.2.2 Stateful ... 34

3.3.3 EJB container ...34
3.4 TRANSACTIONS...34
3.5 REGULAR EXPRESSIONS ..35
3.6 SUMMARY...36

CHAPTER 4 SERVER-SIDE IP-LIBRARIES ..37

4.1 LIBRARY FILE STRUCTURE ..37
4.1.1 Macro-component directory structure..37
4.1.2 Library manager...38

4.2 MODULE DEPENDENCY HANDLING LINKER ...41
4.3 COMPONENT CATALOGUING ...44
4.4 COMPONENT CATEGORIES...44

4.4.1 Category modelling ..45
4.4.2 Category port modelling...46

4.5 COMPONENT MODEL ...48
4.5.1 Parameter modelling ..50
4.5.2 Port modelling ..51
4.5.3 Port width expression ...52
4.5.4 Verilog parser...53
4.5.5 Assigning category to component model ..55
4.5.6 Cataloguing application ...58

4.6 COMPONENT DOCUMENTATION...59
4.6.1 Entity based documentation model ...59

4.7 MACRO-COMPONENT DATABASE ..60
4.8 IP LIBRARY EJB’S...60
4.9 SUMMARY...60

CHAPTER 5 CLIENT-SIDE SCHEMATIC CAPTURE TOOL ...62

5.1 SCHEMATIC CAPTURE ENVIRONMENT ...63
5.1.1 Accessing macro-components...64
5.1.2 Downloading ‘virtual’ macro-components...65

5.1.2.1 Response performance ... 65
5.1.3 Creating a design..66
5.1.4 Parameterising components ...67
5.1.5 Hierarchial design..68
5.1.6 Simulation and verification...68
5.1.7 Simulation time ...71

5.2 DRAWING SCHEMATIC SYMBOLS...72
5.2.1 Symbol geometry...72
5.2.2 Symbol to macro-component binding ...73
5.2.3 Symbol bounding regions ...74
5.2.4 Nets ...74

 v

5.2.5 Drawing controllers ...74
5.3 LICENSE MANAGEMENT ..75
5.4 SUMMARY...78

CHAPTER 6 CLIENT-SERVER INTEGRATION...79

6.1 CLIENT PROFILE RECORD ..79
6.2 CLIENT-SERVER SESSION...81
6.3 PROJECT SESSION ..83

6.3.1 Server project persistence...85
6.4 EDA TOOL-FLOW INTEGRATION ...86

6.4.1 Verification ...86
6.4.2 Module synthesis...86
6.4.3 Running native applications in an enterprise environment ..87

6.4.3.1 Java Native Interface (JNI)... 87
6.4.3.2 Executing system commands ... 87

6.4.4 Job farming...89
6.5 SERVER-SIDE EJBS ...89
6.6 SUMMARY...92

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ...93

7.1 FUTURE WORK ..96

 vi

Table of figures
Figure 1-1 power dissipation in a CMOS digital circuit..7
Figure 1-2 Switching power dissipation ..8
Figure 1-3 Available power savings at different levels of design abstraction [14]8
Figure 1-4 FIR filter constructed from macro-cores..9
Figure 1-5 Macro-component IP core libraries..10
Figure 1-6 Typically used ASIC design flow ..12
Figure 2-1 Client-server architecture ...19
Figure 3-1 Façade design pattern applied to data persistence......................................29
Figure 3-2 Model-View-Controller architecture..31
Figure 4-1 Directory and file structure of macro-component......................................38
Figure 4-2 Library manager interaction using the façade design pattern39
Figure 4-3 Database schema for IP library information ..39
Figure 4-4 Library manager configuration window...40
Figure 4-5 Library path configuration file ...41
Figure 4-6 Sub-module dependency list file for an FFT..42
Figure 4-7 Dependency hierarchy for an FFT ...43
Figure 4-8 Simplified UML diagram of a CategoryModel and CategoryPortModel
objects ..45
Figure 4-9 Screen grab of category manager application ..45
Figure 4-10 XML model of a multiplier category model ..47
Figure 4-11 Database schema for category model...47
Figure 4-12 Database schema for a category port model ..47
Figure 4-13 Component model and its integration with the environment48
Figure 4-14 XML example of a component model ...49
Figure 4-15 Component model database schema ..50
Figure 4-16 Parameter model database schema...50
Figure 4-17 Port model database schema ..51
Figure 4-18 Parameter expressions used to define port widths52
Figure 4-19 Example of definition expansion during pre-processing54
Figure 4-20 Category pattern model database schema ..56
Figure 4-21 Category port pattern model database schema...56
Figure 4-22 UML representation of a component model ..57
Figure 4-23 Library catalogue manager GUI...58
Figure 4-24 Component and category modelling database..60
Figure 5-1 Screen shot of conventional FIR in the schematic capture environment ...63
Figure 5-2 Menu of multipliers available to the client ..64
Figure 5-3 Database queries for 4-input multiplexer...65
Figure 5-4 FIR block processing algorithm...67
Figure 5-5 Configuring macro-component parameters..68
Figure 5-6 Generated RTL Verilog from a schematic ...69
Figure 5-7 Testbench for functional verification of a module.....................................70
Figure 5-8 Results returned from server-side RTL simulation....................................71
Figure 5-9 Anatomy of an adder symbol ...72
Figure 5-10 Constructing an AND Gate symbol ...73
Figure 5-11 Constructing an OR Gate symbol ..73
Figure 5-12 Binding a symbol to a macro-component ..74

 vii

Figure 5-13 Example license file ...76
Figure 6-1 Client database table schema ...79
Figure 6-2 Company database table schema..80
Figure 6-3 Client-library database table schema ...80
Figure 6-4 UML diagram of client shell session EJB..82
Figure 6-5 UML diagram of schematic project session EJB interface83
Figure 6-6 UML diagram of schematic project bean EJB ...84
Figure 6-7 UML diagram of the EJBs used IP library modelling................................90
Figure 6-8 UML diagram of the client information and project interaction EJBs.......91

Table of tables
Table 2-1 EJB JARs installed on application server..22
Table 2-2 Required third party JARs ...22
Table 2-3 Client JARs..26
Table 2-4 List of BES client-server integration JARs ...27

 viii

Abbreviations
The following is a dictionary of the acronyms and terminology that may be used
throughout this document.

API Application Programming Interface
ASIC Application Specific Integrated Circuit
BES Borland Enterprise Server
BMP Bean Managed Persistence
CMOS Complementary Metal Oxide Semiconductor
CMP Container Managed Persistence
CORBA Common Object Request Broker Architecture
DLL Dynamic Link Library
EDA Electronic Design Automation
EJB Enterprise Java Bean
FIR Finite Impulse Response
GUI Graphical User Interface
HTML Hyper Text Markup Language
I/O Input/Output
IDE Integrated Development Environment
IP Intellectual Property
J2EE Java 2 Enterprise Edition
JAR Java Archive
JDBC Java Database Connectivity
LAN Local Area Network
LSI Large Scale Integration
MAC Multiply Accumulator
MVC Model-View-Controller
OO Object Oriented
PDF Portable Document Format
RAM Random Access Memory
ROM Read Only Memory
SIP Silicon Intellectual Property
SME Small to Medium sized Enterprises
SoC System on Chip
SQL Structured Query Language
VLSI Very Large Scale Integration
VSIA Virtual Standards Interface Alliance
XML eXtensible Markup Language

 ix

Legal issues
Patents

Some of the work outlined and detailed in this thesis is protected by a published
patent: GB0301993.2 [28].

Copyright and trademark information

The work implemented in this project requires the use of and interaction with several
commercial EDA applications. The products or tool names and the company names
are protected by copyrights. General copyrights and trademarks are acknowledged
below and apply throughout this document.

Copyrights © and trademarks ™used are

 Cadence

 Synopsys

 BuildGates

 DesignWare

Verilog-XL

 NC-Verilog

 MySQL

Third party software licenses

The software developed during this project required the use of several 3rd party
applications and libraries. The licenses covering the usage and terms and conditions
of these products can be found in Appendix D. The majority of these 3rd party
products require the distribution of their full license with any application using them.

 x

Chapter 1
Introduction

In this modern era of rapid evolution in the electronics industry, circuit designers are

always eager to be abreast of the latest electronic design automation (EDA) solutions

and technologies. However, due to the inordinate complexity of leading edge design

tools, the costs attributed with them discourage a significant proportion of design

companies from their use. This unfortunately relegates financially constrained

companies to using dated and/or inferior EDA systems in an attempt to develop what

should still be classed as state of the art hardware products for their customers. In an

attempt to curb costs and enhance production efficiency, a design facility may decide

to upgrade their development tool-kits to maintain compliance with the latest

technologies. Not only is this an expensive venture but also potentially time

consuming. After acquiring the appropriate software packages, they need to be

installed on site. Considering the heavily bloated distributions provided by the

majority of big named vendors, significant resources might need to be allocated to the

new set-up. Computer processing and storage requirements may need to be reviewed.

Assuming that computational resources suffice, a significant proportion of time will

then need to be dedicated to configuring a stable and reliable installation. Once up and

running, optimum efficiency can only be achieved via constantly tweaking and

patching these overtly complex CAD environments. As dedicated support staff are an

expensive proposition, especially to small to medium sized enterprises (SME) this

chore is all to often allocated to the design engineers themselves. This arrangement

significantly detracts the small company from its core competency – that of designing

integrated circuits.

1

Remarkably, since published in 1965, Moore’s Law [1] has prevailed to be the

guiding trend in defining the semiconductor roadmap. Now forty years later,

respected industry figures including Walden Rhines, Chief Executive of Mentor

Graphics [2], continue to commend this empirical observation that the performance

and component densities of integrated circuits doubles approximately every eighteen

months [3]. Even as device geometries shrink into the ultra-deep-submicron, 0.13µm

and below, novel solutions continue to emerge [4] to overcome the growing

challenges faced – ensuring Gordon Moore’s predictions will hold valid well into the

future.

Considering these ever-escalating complexities in modern integrated circuits,

designers are increasingly turning to technology libraries of ‘Intellectual Properties

(IP)’ or ‘virtual component blocks’. These are silicon verified hardware core modules

designed primarily for reuse as functional blocks in larger architectures. Through the

plugging together of these cores, larger designs and even full systems can be realised.

The critical advantage of this approach is that complex applications can be rapidly

assembled by linking together the desired cores, providing of course their interface

protocols are compatible. This means that designs are no longer constructed from the

ground up but rather from the pedestals of these core building blocks. Additionally,

the level of expertises required to implement advanced designs is greatly diminished.

Typically pre-designed IP modules are fully optimised in terms of power consumption

and/or silicon area, both of which are traits precluded to the realms of highly

experienced design engineers. Reinforcing the physical benefits of the IP approach is

the fact that each core is guaranteed to synthesis error free to a particular silicon

technology. Therefore design engineers need only verify and debug the interfacing

between the cores they have chosen to embed in their designs. Hence the

amalgamation of the benefits provided by the IP approach helps to score the primary

business goal – that of minimising time to market.

However the concept of reusable IP cores is not without its problems. For small

design companies the acquisition of suitable libraries can be an expensive reality.

Currently the world’s leading vendor in IP core libraries is Synopsys with its

DesignWare [7] products for which there are twenty-five thousand customers. This

library has a starting price of $17,000 and offers a range of foundation level cores. As

well as containing cores essential to most designs like adders and multipliers, it also

2

contains building blocks that may never be of use to particular customers. Design

managers must then be able to justify the cost of the entire library against the

proportion of the library they realistically intend to use. In a highly competitive

industry costs must always be minimised leading to the classic “make-or-buy”

decision [8]. Design managers may see it as cheaper for their company to make their

own IP blocks rather than purchase acquiring from 3rd parties. But doing so diverts

resources from the company’s goal of developing the products key to its expertise

meaning longer development cycles and increasing its time to market. Missing early

market opportunities will, in the long run, cost the company.

There are also potential problems for authors of reusable IP cores intending to sell

them, either as stand-alone blocks or as part of a library. The most obvious issue is

with security. Once an IP has been sold, the author looses direct control of their

intellectual property. The provider is then left to trust that any new proprietor will

respect and obey the terms and conditions of any license accompanying the virtual

circuit blocks. However there are several steps that the author can take to enhance the

security and protect their IP.

• Pre-compliation

There are two types of synthesis and verification tools, interpreters and

compilers. Interpreters take the source hardware description language (HDL)

code and interprets it at run-time. An example of an interpreter is Verilog-XL

from Cadence. For these tools to operate, the source code needs to be available

meaning that the security is potentially compromised. Compilers, such as

NC-Verilog – also from Cadence, are tools that initially convert the source

code into a binary representation that can be more rapidly simulated. IP

vendors can choose to distribute their cores in a pre-compiled form without the

HDL source leading to a more secure solution. This is the security concept

behind the Synopsys DesignWare libraries. Although secure there is an

element of vendor-lock-in meaning the IP can only be used with a specific

range of EDA tools.

• Encryption

As security is of critical concern in the IP industry there has been significant

interest in encryption. To date the barrier to encryption technologies has been

the need for all tool vendors to adopt the same standard. Recently the Virtual

3

Standards Interface Alliance (VSIA) has begun leading the initiative to define

an industry wide encryption standard [9] that will benefit both EDA and IP

vendors.

• Obfuscation

There are some simpler techniques providing a reasonable degree of IP

protection. The most popular of these is obfuscation [10, 11]. In lay terms

obfuscation takes an intelligible source code and makes various manipulations

to reduce its readability to the point whereby it is impractical to understand or

reverse engineer it. These are typically automated refactoring [12] operations

that will change the names of all variables, methods and functions into

seemingly random assortments of characters. Key to the success of this

technique is the fact that all the new names are very similar so that a human

reading it will quickly become confused and unable to follow its structure.

Additional manipulations include stripping out comments and whitespace to

further reduce its intelligibility. This security through obscurity technique only

impinges a human’s ability to decipher the code. The obfuscated transform is

functionally equivalent to the original source code.

1.1 Inspiration
Prior to starting of this project, market research by The University of Edinburgh

identified a need for a low cost solution that could help small to medium scale

enterprises (SME’s) compete in the fiercely competitive consumer electronics

industry. Many SME’s are sitting on potential technology that could make a real

impact in the market place, but are inhibited by high-cost EDA tools and lack of high-

performance, low-power design skills. In response this thesis investigates and sees the

realisation of a platform addressing these inhibitors. The proposed platform has since

been patented – “System and method for rapid prototyping of ASIC systems” [28].

4

1.2 Objectives
Having identified the issues highlighted in the previous sections, this thesis will

proceed to describe research and development conducted to investigate a potential

solution. The key objectives of the research are:

1. Remote access to intellectual property libraries

2. Security of the IP invested in these libraries

3. Remote access to EDA tool suites

4. Encompass the above objectives within an effective design platform

5. Efficiency, scalability and reconfigurability of this design platform

All of these objectives will be integrated into a single platform using internet

technologies as a communication medium. This effectively constitutes a client-server

architecture whereby the server securely hosts IP libraries and EDA tool suites which

can be accessed anywhere in the world using a specifically designed client

development environment. Based upon IP libraries originally developed at the

University of Edinburgh, the resultant framework should facilitate the secure rapid

deployment of silicon solutions for low-power, high-performance applications.

1.3 Intellectual property library
As previously indicated the primary objective of this research is the deployment of

intellectual property cores through a web-based EDA service. Hence a suitable range

of IP cores must be made available. For many years The University of Edinburgh has

been researching and developing low-power, high-performance techniques for digital

systems. Through time, the university has collated a large assortment of cores aimed

at many different applications. One MSc research project by Eric Zwyssig [13]

attempted to build a catalogue of IPs, called the macro-component library. Macro-

components are essentially IP core building blocks that can be used to form a solid

foundation upon which advanced, high-performance, low power digital systems can

be constructed. The framework described in this thesis builds upon Eric’s work as

well as incorporating many additional IPs developed in other research projects since.

The following subsections will highlight some of the key characteristics of these

5

macro-components justifying the thesis title which claims suitability for power and

performance critical digital systems.

Throughout this thesis, the terms “macro-component”, “core” and “IP” may be used

interchangeably in reference to macro-components.

1.3.1 Reusability
By far the most important characteristic of macro-components is their reusability. If a

future vision of large-scale system-on-chip (SoC) applications is to be a reality, an

extensive re-use methodology must be implemented [5]. This being recognized

throughout the industry, two of the major EDA vendors have collaborated to publish

the book “Reuse Methodology Manual” [6] as a set of recommended guidelines to be

followed by digital hardware design engineers.

During the design of the macro-components, careful consideration is given to their

interface configuration and degree of internal flexibility. Designed in a generic

fashion with common interfaces across similar category types, these blocks can be

“plugged together” like jig-saw pieces to form advanced systems of arbitrary size and

complexity. An example of this can be seen in Figure 1-4. Design trade-offs can then

be considered and optimisations introduced by simply substituting key blocks in the

design with alternatives of a similar category. For example a datapath’s performance

may be dominated by its multiplier. Performance trade-offs in terms of power, area

and speed can then be made by “plugging in” the appropriate alternative multiplier

from the library into the design.

1.3.2 Parameterisability
The issue of internal flexibility is dealt with through parameterisation.

Parameterisation is the process of configuring the characteristics of the core at design

compilation time. For example the bit-width of the module inputs may be defined

using a parameter called input_width. Variations of that component can then be

derived by simply over-riding the input_width parameter value at design time.

Verilog HDL supports the parameter keyword to identify the available parameters

in the module. VHDL uses the term generics for the same purpose, but as the macro-

component library is purely defined using Verilog, we will no longer refer to generics

in the thesis.

6

1.3.3 Inherent low power characteristics
One of the key objectives when designing the macro-components was “low power”.

With the increasing demand for portable products, power consumption has become

one of the key issues in SoC design. All portable consumer products are dependent

upon their batteries. Unfortunately power demands for new applications is growing

faster than the rate of technological advances in battery technology. To compensate

for this, application designers must attempt to make circuitry that consumes less

power. The power consumption for CMOS based digital circuits can be calculated as

shown in Figure 1-1.

Power = S × CL × Vdd
2 × fclk + Isc × Vdd + IL × Vdd

switching short
circuit

leakage

Figure 1-1
power dissipation in a CMOS digital circuit

Figure 1-1 shows that the power consumed in a CMOS circuit can be attributed to

three distinct characteristics, these being switching capacitance, short circuit current

and leakage current. The dominant form of power consumption can generally be

attributed to gate switching. The principle of gate switching is demonstrated using the

NOT gate of Figure 1-2. Each gate has an associated parasitic capacitance CL that

must be charged and discharged each time that gate switches. The larger the number

of gates in a design, the greater it’s switching capacitance and hence the more power

it consumes.

7

Vdd

CL

Figure 1-2
Switching power dissipation

All the macro-components incorporate various algorithmic-level optimisations that

lead to significant power savings, which in some cases can be as high as 75% – see

Figure 1-3 [14]. As these cores are available as system-level building blocks, any

design incorporating them will naturally inherit these power savings. Hence the

macro-component libraries offer the opportunity for engineers to design and develop

low-power systems with little or no experience in low-power methodologies.

System
Level

Algorithm
Level

Register Transfer
Level

Gate
Level

Transistor
Level Silicon

>75% 50-75% 15-50% 5-15% 3-5%

>50% 25-50% 15-40% 10-20% 5-10%

Power
Savings

Accuracy
Error

Figure 1-3
Available power savings at different levels of design abstraction [14]

1.3.4 Technology independent
All macro-cores are written in pure synthesisable Verilog RTL and are totally

independent of any underlying technology cell libraries. This gives enormous

flexibility and greatly extends the range of end-use applications for the cores. Design

engineers typically work to a specification that will define the cell library vendor and

the device geometry size. Hence a customer using UMC’s 0.18µm cell libraries will

8

have a comparable power/performance advantage to another customer building on

TSMC’s 0.15µm silicon process when using these cores.

1.3.5 Tool flow independent
The characteristics that make the macro-components technology independent also

make them tool flow independent. All HDL design files are written in pure Verilog

RTL and only describe the system architecture. Necessary synthesis directives and

optimisation constraints are included in separate tool-flow dependent script files as

opposed to pseudocomments in the Verilog source code. Different scripts can be

developed for each desired tool flow.

1.3.6 Constructing an IP from macro-components

FIR filterRAM

ROM

Reg

Reg

Reg

Reg

MAC

Mult

Figure 1-4
FIR filter constructed from macro-cores

Figure 1-4 shows how a Finite Impulse Response (FIR) filter can be rapidly

assembled using macro-components from the library. As can be seen the basic

architecture comprises a RAM, ROM, multiplier and accumulator [15]. The RAM

stores the incoming data to be processed. Coefficients defining the transfer response

of the filter are stored in the ROM. On each clock cycle, one of the coefficients is

multiplied by the in input signal in the RAM and the results accumulated by the

9

multiply accumulate unit (MAC). Studies of this architecture have shown that the

majority of the power is consumed by the multiplier [16]. Using the macro-

component concept, the multiplier can be simply removed from the design and

replaced with another one that leads to better power/area/speed characteristics.

Referring to Figure 1-4 the multiply unit is one of several multiplier macros. All these

macros have a similar interface, meaning they have the same inputs and outputs,

making it relatively straightforward to swap between them. The figure shows these

inputs and outputs (I/O’s) using a key symbol. This is intended to reflect the

parameterisability of the core. When it is instantiated in a design, it should be

parameterised such that its ports fit with the modules around it. Most the macro-

components have extensive parameterisations allowing them to be adapted for a

variety of situations.

1.3.7 Macro-Libraries
As a result of several years of dedicated research at the University of Edinburgh, a

vast resource of highly optimised macro-component IP cores have been designed and

developed. These IP cores range in complexity from simple adders and multipliers to

higher-level blocks including FIR filters, receivers and various codecs. Based upon

work originally conducted by Eric Zwyssig [13], a single macro-component library

was developed. During this research period the macro-component library was

radically extended in terms of available cores and their end use applications. To

capitalise upon the potential extensibility of the IP delivery platform, the single

macro-component library was partitioned into the arrangement shown in Figure 1-5.

Foundation

Signal
processing Communications

Image
processing

Figure 1-5
Macro-component IP core libraries

10

1.3.7.1 Foundation
The foundation library is the base library from which all other libraries are built. It

contains the majority of the low-level cores that are essential dependencies of the

higher-level libraries. As such the cores found in this library have minimal scope for

low power optimisation. Rather it is the way in which these components are used in

the larger designs that lead to substantial algorithmic power savings. Examples of the

types of macros found in this library are adders, subtracters, registers and multipliers.

1.3.7.2 Signal processing
The signal processing library complements the foundation library to include various

DSP functions such as Finite Impulse Response (FIR) filters and Fast Fourier

Transforms (FFTs) [17].

1.3.7.3 Communications
All macros specifically relating to communications based applications are to be found

in this library. Macros found here include high-throughput FIR filters [18] and Code

Division Multiple Access (CDMA) receivers [19] [20].

1.3.7.4 Image processing
All image processing macros can be found in this library. Example applications found

here include Discrete Cosine Transforms (DCTs) [21] and wavelets [22].

1.3.7.5 Cache libraries
Each of the main libraries has one or more corresponding shadow libraries, referred to

as cache libraries. Cache libraries are used to house all dependency modules which, in

their own right of limited value, but critical for their parent macros. An example cache

module is one of the Wallace tree stages of the Wallace multiplier. The Wallace tree

state module is of little or no value to any application other than the Wallace based

multiplier. Placing these modules into the cache libraries keeps the main libraries

clutter free. Therefore every module found in one of the main libraries should be a

useful core in its own right. This arrangement is essential for the platform deployment

as only the non-cache libraries need be included in the server-side databases.

11

1.3.8 Design Flow
Figure 1-6 depicts a typical design flow that most application specific integrated

circuit (ASIC) engineers will be familiar with. Each stage in the design flow

represents one of the steps necessary to progress a design from high-level RTL to

production and silicon ready GDSII representation. However with constantly

shrinking process technology geometries, there are great challenges to meeting timing

closure. This can require further optimisations to the design flows [23].

The first stage of the design process is to describe the system being developed using a

hardware description language (HDL). This particular design flow uses Verilog as the

HDL but VHDL can also be used. A testbench will then be developed to verify the

functionality of the HDL description. Assuming that the HDL model is described in

register-transfer-level (RTL) notation, it can then be synthesised into a technology

specific netlist. Again this should be verified, preferably using the same testbench as

that used for the RTL to ensure that the synthesis process completed correctly and that

the resulting netlist is functionally equivalent. Finally a floorplanning process is

employed to lay out the design on silicon. A final verification stage should then be

employed to ensure that the design still operates as expected and timing closure is met.

Technology
specific netlist

Layout

Verification
(RTL simulation)

Synthesis

Floorplanning
(placement & routing)

Power Analysis

Verification
(Gate-level simulation)

Verification
(Post-layout simulation)

SDF

SAIF

CLoad

System Design
Verilog HDL

Figure 1-6
Typically used ASIC design flow

12

This particular design flow has been adopted for this platform due to its obvious

hierarchy and the ease with which this can be automated. This hierarchy has clearly

defined steps such as RTL design, verification, synthesis, physical design, and

physical verification. However, if closely inspected it is possible to identify potential

concurrency in the flow through partitioning. An example of this is the hierarchical

concurrent flow graph (HCFG) which captures the iterative, hierarchical, and

concurrent nature of ASIC design flows [24].

Each of the steps in the design flow is performed by a particular software package

tool. To a certain extent the design flow is fixed in terms of the tools implementing

each stage, as those from each vendor will employ different types of optimizations.

Recent studies have shown that it is possible to exploit the potential of modern

programming languages to simultaneously optimise design flows to support multiple

EDA tools [25].

13

1.4 Electronic design automation – EDA
Since the introduction of hardware description languages (HDL’s) in the 1960’s, a

great deal of time, money and research effort has been dedicated to developing more

effective and efficient ways of designing electronic circuits. The majority of this work

has been in finding new ways of raising the level of abstraction with which designs

are described. Originally engineers described circuits in terms of transistors, later

progressing to gates. In the late 1980’s rudimentary logic synthesis tools emerged

further raising design abstraction to register transfer level (RTL). Today the industry

is heading towards behavioural level abstraction with hardware compiled directly

from C/C++ based languages. As chips become ever larger, incorporating more

complexity, there is a corresponding demand for new means of simplifying their

design process.

In 2004 the global semiconductor industry had an estimated value in excess of $200

billion [26]. Propelling this industry’s growth and maintaining the world’s insatiable

appetite for new technological applications is a supporting plethora of electronic

design automation tools. It is this unfathomable diversity of EDA products and tools

that drives the bleeding-edge of the current technological revolution. Indeed Moore’s

Law can also be considered to apply to the past, current and future roadmap of the

EDA sector [27].

Referring to Figure 1-6 a typical digital design flow has many distinct stages. Each of

these stages will generally require one or more dedicated EDA tools. The first stage in

the flow is designing the ‘system’ and presenting it as an HDL description. This in

itself could be further divided into many sub-sections. For example the system could

first be mathematically modelled using a high-level tool such as MATLAB to verify

the algorithms. Performance analysis tools may be used to optimise the

hardware/software partitioning. Code generation tools could be used to automatically

derive the HDL from suitable templates. In fact the list of system design and

optimisation tools is almost endless. Following system design is the verification stage,

which ensures the HDL description is functionally accurate and/or equivalent to the

system model. The RTL files are then synthesised into a technology specific and once

again verified to ensure compliance with the system specification model. All of these

stages are considered the “front-end design”. A further suite of EDA tools is then

14

necessary for the back-end design stages, which are concerned with optimising the

silicon layout.

1.5 Remote IP and EDA services
This section will take a look at current practices in the semi-conductor industry and

then introduce the potential of deploying these as remote web-based services.

1.5.1 Remote IP access
The typical industry model is to purchase intellectual property libraries such as those

available from DesignWare [7] and install them on their local area networks (LAN).

For SME’s in particular this can be an expensive proposition. These libraries come

with a high price tag and can contain more blocks than the customer ever realistically

expects to make use of. Additionally the user may be locked into using a particular

EDA tool flow for the given library, such as Synopsys’ DesignCompiler.

Intellectual property libraries really only apply to foundation level cores. Larger cores

are usually purchased as stand-alone blocks. Worldwide there a hundreds of vendors

selling thousands of IP cores. This can make finding the right core for a particular

application a daunting task. Recognising this, The VCX [29] and Design and Reuse

[30] set up web services acting as central repositories for IP cores from different

vendors. Customers registered with these companies could purchase 3rd party cores

via their services. Although expanding the intellectual property market, these services

were not without their problems. Customers had limited assurances that the cores

would fulfil their needs in a satisfactory way until after purchase and run through a

simulation environment. Some vendors selling via these services were worried about

the security of their IP and thus only released technology specific netlist

implementations of their cores, or in some case hard IP blocks. These may not suit

customer’s design flows and would take much longer to verify in simulation

environments.

The solution described in this thesis attempts to circumvent some of these problems.

All IP cores available through this platform are stored in RTL form on a secure server.

The IP modules available on the server can be browsed using either the schematic

capture development environment described in Chapter 1 or potentially via HTML

web pages. This platform comprises a server-side database cataloguing the interfacing

15

characteristics of all IPs in the libraries. Virtual ghost images of these cores can be

downloaded and instances of them pluged together within the design environment, all

while under the impression that the cores are locally installed on their workstation. As

only IP block interfacing information is downloaded from the server, the service is

fast enough to operate in real time.

This arrangement also helps maintain the security of the intellectual property within

the macro-components as the RTL never leaves the server. However and the design is

still constructed at the RTL level verification performance levels are still high.

1.5.2 Remote EDA access
Since the dotcom boom in the early 2000’s there has been significant interest in

attempts to provide EDA services via the internet. Most of these are based on portal

technology that emerged around the same time. The term portal means gateway and

refers to web sites that attempt to offer a diverse range of services under a unified

interface. A classic example of a well known portal is the Yahoo web site. This site is

a portal to search engines, email, online shopping and chat rooms to name but a few.

In the context of semiconductor design, a web portal could offer IP search engines,

component catalogues, vendor information and even access to EDA tools. With this in

mind, the term portal could also be used to cover the services of The VCX and Design

& Reuse, mentioned in section 1.5.1.

As the technology progressed, enterprise web portals emerged and were seen as the

new principle in software engineering of the time [31]. Possibly one of the most

comprehensive descriptions of the potential services available under an EDA type

enterprise web portal environment is captured in a patent belonging to Cadence [32].

This was a very broad patent covering many technologies in a very vague manner –

possibly making it difficult to enforce. This was later refined, targeting only chip

design (dropping electronic circuit design from the title) [33] and was to become the

bases for an enterprise portal web site known as SpinCircuit. However this service

never really took off and the web site was only active for a short period, although

Cadence still owns the spincircuit.com domain name. A potential reason for the initial

failure of SpinCircuit is the inordinate complexity involved in constructing such a

service, integrating IP database, verification, synthesis and even chip fabrication using

nothing more than a web browser. Others have adopted simpler approaches, for

16

example using portal technology to search remote vendor IP databases, download the

relevant information and us a ‘neural dynamic hub’ to simplify transporting design

information between local design tools [34].

1.5.3 IP & EDA development framework
There has been much research involved in designing and developing remote IP

services and remote EDA services. However there is little evidence of a solution that

truly integrates both of these services in a seamless manner. Cadence seems to have

tried by offering a portal interconnecting design engineers with services and IP

libraries from disparate vendors. However this is problematic as IP from one vendor

may not necessarily smoothly interact with those from another vendor. Additionally,

IP optimised for tools from one EDA flow may have poor characteristics if the

designer decides to access a different tool set through the portal.

This thesis outlines the framework for a system that attempts to provide both IP and

EDA remote services as a tightly integrated solution. Within this framework,

designers have ‘virtual access’ to extensive libraries of high-performance, low power

IP cores. From within a custom developed schematic capture application designers

can plug together virtual instances of macro-components, gradually building

comprehensive digital and DSP systems. This framework is architected such that the

users perceive that they are using IP libraries and EDA tools within their own LAN,

as they are working from a locally installed executable application that interacts with

the server as opposed to a set of HTML pages viewed using a web browser. This

gives the design environment the same responsive feel as traditional tools without the

latency associated with HTML based solutions and their notoriously slow page

refreshing. Seeing only the schematic capture client application, the concept of an

underlying portal supported by an enterprise application server is abstracted away.

Additionally, this framework has been designed such that it can operate independently

of the internet portal technology. Making extensive use of the façade design pattern in

conjunction with the model-view-controller design pattern, the IP catalogues can be

defined within an SQL database (of the same structure back-ending the application

server) or within XML files. Similarly the simulation and verification tools can be

accessed via the portal or on the local area network. This novel enhancement extends

the functionality and extensibility beyond other solutions currently available.

17

1.6 Summary
This chapter introduced some of the problems currently facing the digital design

community and in particular those operating under tight financial constraints. These

are predominantly access to high-quality design building blocks, protection of

intellectual property and the expense of state-of-the-art EDA tool facilities.

An IP/EDA framework was proposed that would attempt to mitigate some or all of

these issues. This framework is based upon extensible libraries of intellectual property

macro-components and a supporting EDA tool flow wrapped together and deployed

as a remote service. The service would see IP securely protected on the server with a

client side application accessing virtual images of the macro-cores. This will protect

the intellectual property, while providing users all the performance benefits of RTL

level design. Access to EDA tools will allow resultant designs to be verified and

synthesised.

18

Chapter 2
Client-server architecture

To implement a system with capabilities defined in the introduction chapter requires a

client-server software architecture. There are currently two technology platforms for

implementing such services, Java 2 Enterprise Edition (J2EE) and Microsoft .NET. If

optimised and performance tuned, .NET would seem to have a slight advantage [35]

however it is tied to the Microsoft platform making it unsuitable in this application as

it must integrate EDA tools running on Sun Solaris. J2EE solutions are highly-

complicated multi-tier platforms with minimal constituent parts being an enterprise

scale application server and database servers hosted on a powerful workstation, or

even clusters of workstations. The configuration and architecture of the software and

hardware in J2EE environments and the trade-offs between them has a significant

effect upon the performance of these servers [36].

EJB

EJB Container

Servlet/JSP ContainerEJBEJB

JSP

JSP JSP

EJBEJBEJB

EJBEJBEJB

Web server

Application Server

Database
(RDBMS)

Information
& data tier

Web
ClientApplication

Client

Server Cluster

Workstations

Figure 2-1
Client-server architecture

19

Figure 2-1 presents a generalisation of the J2EE client-server architecture adopted for

the IP and EDA solutions provider. This is a multi-tier solution where the first tier is

the client’s application environment. In theory the clients can be any application with

network/internet access and supporting an appropriate communication protocol such

as CORBA. CORBA, standing for common object request broker architecture, is a

standard that enables objects from different vendors and from different platforms to

communicate and interoperate within enterprise environments. In this thesis the client

platform is a schematic capture environment that will be described in Chapter 5.

Separating the client and server tiers is a corporate firewall hosted on the server

network that ensures secure isolation of the server-side data and services. Behind the

firewall is a series of applications supporting the business logic, sub-divided into

further tiers, all running on a local area network (LAN). These tiers include web

servers, applications servers, database servers, network file servers and optional load

balancers for clustering. This project extends this conventional architecture to include

workstation resources to host the EDA tool suites required for IP verification and

synthesis.

2.1 Programming language
The goal of this research is to develop a framework for a system that would allow

access to remote libraries of intellectual property cores across networks or even the

internet. Although essentially web-based services, the solution is not provided as a

web site. It is a stand-alone executable application that simply uses web protocols to

facilitate communication between the client and the server. One of the key objectives

is that it is to host a graphical user interface (GUI). To a certain extent this limits the

available choice of development languages for the client-side to Visual Basic, TCL-

TK, Java or C/C++ and a suitable widget set such as GTK.

UNIX has always been the platform of choice for many ASIC designers. However

cost considerations now mean that Linux is rapidly gaining popularity as the prefered

operating system. In the FPGA world, the majority of development tools are only

available for Microsoft Windows. To fulfil the research objective of platform scalality,

the ideal solution will operate on all of these operating systems.

With this in mind, Java was chosen as the most suitable development language due to

its portability. Other influential factors include its excellent networking capabilities

20

(which include CORBA), vast resource and API libraries, extensive documentation,

its ease of use and of course direct source code compatibility with that used for the

J2EE server. This will later prove beneficial as it will allow for a reconfigurable

application which, through integrating the server code, can operate independently of

the server.

Although generally not renowned for its execution speed, Java has been successfully

used in other EDA type applications with acceptable levels of performance [37, 38].

However speed is less of a concern in this project as the main data intensive

processing will occur on natively compiled EDA tools installed on the server

workstations. Hence extensive networkability is more important than raw processing

speed. Again Java is the winning choice due to the architecture of its underlying

virtual machine that offers greater scalability, flexibility and functionality than other

distributed computing protocols such as remote procedure calls (RPC) [39].

2.2 Application server
As can be seen in Figure 2-1 the application server forms the backbone of the services

hosted behind the firewall. An application server is a platform implementing the

business logic, information and data processing tiers in typical enterprise scale

environments and large web-based projects [40]. These software systems combine

distributed computing technologies and object-orientated (OO) techniques with multi-

user resource pooling and secure transactions to provide scaleable and portable

business systems. To ensure a degree of integration between hosted services, all

application servers comply with the Sun’s published specifications – the latest release

of which is version 1.4 [41].

All services necessary for the deployment of IP macro-cores across the web were

developed as Enterprise Java Beans (EJBs) that were then installed in the application

server. A comprehensive guide to the EJB 2.0 framework can be found in the book

Enterprise JavaBeans [42] although there is a brief summary in section 3.3.

There are a number of application servers that could be used to service this

application such as BEA Web Logic [43], Borland’s Enterprise Application Server

(BES) [46] and a freeware offering known as JBOSS [44]. The work documented in

this thesis is built around BES, due to its integration with Borland JBuilder Enterprise

Edition [45]. BES is a multi-partition application server, meaning that it can serve

21

multiple applications, each of which are referred to as a partition. The work described

in this thesis only needs to use a single partition and all relevant EJB packages need to

be installed on that partition. Table 2-1 shows a list of all packages that were

developed for and installed on the enterprise server.

JAR Name Size

Library_Management_EJB.jar 662Kb

Source_Generator_EJB.jar 82Kb

Math.jar 77Kb

File_Management.jar 27Kb

Table 2-1
EJB JARs installed on application server

In addition to those listed in Table 2-1, a number of third party packages are also

required. Table 2-2 lists the necessary 3rd party packages that have been used and

provides a general description of each of them. As these packages are generic in

nature and can potentially be applied to any application they are installed into a

different location on the application server. Packages in this location are automatically

included in every partition’s classloader.

JAR Name Purpose

jakarta-oro-2.0.8.jar Regular expression parsing

jdom.jar High-level XML data structures

sax.jar Low-level XML reader and writer

xerces.jar XML parser

mysql-connector-java.jar MySQL database driver for java

commons-dbcp-1.1.jar Database connection pooling

Table 2-2
Required third party JARs

22

Enterprise scale application servers are extremely complicated pieces of software

managing a vast array of processes and services. In order to extract the maximum

potential from these tools, they must be carefully optimised and performance tuned.

This typically requires dedicated support staff highly experienced with the particular

server. They are generally assisted using various J2EE application performance

management systems, a number of which are reviewed here [47].

2.3 Backend database
An application server provides a framework for remote clients to access and

manipulate information and data on a server, but it does not itself provide any data

storage mechanism. A separate persistence layer must be installed and then integrated

with the application server. The persistence layer can take many forms, ranging from

simple text files to extensible mark-up language (XML) [48] scripts, but generally

takes the form of a 3rd party database server. Unlike a typical stand-alone database

application such as Microsoft Access, a database server allows multiple users to

simultaneously read and write data – complementing the needs of the application

server which is designed to service a large number of concurrent users.

Communication with database servers is generally by way of the widely adopted

structured query language (SQL) [49]. SQL is a script based language that allows

applications and users to rapidly access and manipulate the necessary information.

In the domain freeware of database servers there are essentially two dominant players,

Postgres [50] and MySQL [51]. Postgres offers superior features and functionality but

unfortunately its Java interfacing is poor making it difficult to integrate with the

application server. Hence the back-end database used in this research is MySQL.

Both the database server and the application server run as two independent services

and can in fact operate on different workstations on the LAN. To enable them to talk

to each other, a Java database connectivity (JDBC) driver [53, 54] must be installed.

Fortunately an excellent JDBC driver is available for MySQL called ConnectorJ [52]

and it integrates well with the application server. Unfortunately though, Borland’s

Enterprise Server does not support container managed persistence (CMP) with any

freeware database server and so all EJBs had to use bean managed persistence (BMP).

This makes little difference in terms of functionality but required more effort to

develop each EJB as all the database integration logic has to be manually developed.

23

A brief summary of BMP and CMP EJB’s can be found in section 3.3 with a more

comprehensive description of CMP and BMP in [42].

Opening a connection to a database is a computational and resource expensive

operation. Each and every query and update issued to the database requires its own

dedicated connection. This is a well known bottleneck that has a drastic effect upon

performance. To compensate, a database connection pool is generally used. This is

another layer that sits between the JDBC driver and the database server. The

connection pool maintains a number of open connections to the database. When the

JDBC driver requires a new connection it simply asks the pool manager to grant it one.

As the connection is always open, a significant amount of time and resource is saved

leading to much improved performance. The connection pool adopted for this project

is DBCP [55].

2.4 CAD tools
The application server and database serve merely as a framework allowing transaction

based integration between clients and server applications. One of the fundamental

goals is to allow digital designs to be functionally verified and synthesised on the

server. This means that the appropriate EDA tools must be installed on the server and

integrated with the application server. For verification a fast and efficient simulation

engine called Icarus Verilog [56] was used, however alternatives such as Verilog-XL

and NC-Verilog from Cadence can also be used. Synthesis was generally performed

using either Synopsys’ DesignCompiler or Cadence’s BuildGates.

2.5 Deployment
To deploy this service the server must be suitably configured, a process known as

hosting, and client executable applications must be compiled. These processes are

described in the following sections.

2.5.1 Hosting
For the server to be accessible to client applications it must be suitably hosted. The

host can be a single workstation, but considering the nature of this project, a hosting

cluster is more appropriate. A hosting cluster is a LAN of workstations dedicated to

the purpose. In such an arrangement at least one machine is dedicated to each of the

server tasks. One machine would host the application server with another for the

24

database server. Several additional machines would also be needed to farm out design

verification and synthesis jobs. If deemed necessary slave servers could also be

installed providing a redundant backup and facilitating comprehensive fail-over

support. If 24/7 uptime must be guaranteed, having redundant servers eliminates

issues associated with single-point-of-failure. Should one of the main servers over-

load or crash, a slave mirror will automatically take over maintaining seamless

interaction with the client application. The majority of application servers and

database servers have built-in support for clustering, slave servers and automatic

failover [57].

Configuration and maintenance of a cluster is considered outside the scope of this

research and therefore all above mentioned applications have been installed on a

single workstation. However this arrangement is only sufficient to support a very

small number of concurrent clients, perhaps 3 at most.

2.5.2 Client application
Deploying the service to clients simply involves providing them with a suitably

packaged executable application. Having been written in Java, the client application

must be packaged into a series of JAR files. JAR files are java archives containing all

the byte-code compiled classes associated with the project. A list of the JARs

developed for the client applications is given in Table 2-3. A full list of all java source

files used in both the client and server can be found in appendix A.

25

JAR name Size

category_stubs.jar 213Kb

category_manager.jar 149Kb

corecompositor_stubs.jar 241Kb

filemanagement.jar 27Kb

icon_images.jar 131Kb

ip_shell_client.jar 605Kb

librarymanagement.jar 609Kb

librarymanagement_stubs.jar 219Kb

librarymanagementinterfaces.jar 245Kb

math.jar 77Kb

sourcegeneratorinterface.jar 377Kb

Table 2-3
Client JARs

Along with the JARs developed as part of this project, some 3rd party JARs also need

to be provided to clients. The necessary 3rd party JARs for the client side are the same

as those listed in Table 2-2 with the exception of the MySQL database driver package.

All of the above mentioned packages are necessary for the client application to

perform its required functionality. However none of these provide any support for

client – server communication and integration through CORBA. For this several

additional JARs need to be packaged along with the client application. These JARs

are specific to the particular application server being employed. For BES a list of the

necessary JARs can be found in Table 2-4. These packages provide support for EJB

container interfacing, implementations of communications protocols, secure data

transmission (encryption) etc.

26

Borland Enterprise Server JARs for client support

asrt.jar

beandt.jar

dx.jar

lm.jar

vbejb.jar

vbjorb.jar

vbsec.jar

xmlrt.jar

Table 2-4
List of BES client-server integration JARs

2.6 Summary
This chapter presented an overview of the client-server architecture and deployable

services based upon the J2EE standard. This standard uses CORBA as the

communication protocol and so also has to be supported by the client application. To

simplify overall development Java was adopted as the programming language for

client application as some code can be shared with that of the server. Enterprise scale

systems can be defined as a collection of server-side services. An application server is

the main gateway for the client to access these services and co-ordinates all of the

business logic. This particular application requires an SQL database and EDA tool

suite as constituent parts of the enterprise layers. Choices and justifications for the

products implementing these constituents was presented. The same architecture can

be realised using different products, possibly leading to variations in performance and

scalability. Quite probably the largest variation would be seen using a combination of

application server and database that allows for container managed persistence

meaning more scope for optimisation.

27

Chapter 3
Prerequisites

This chapter presents a general overview of some of the practices and principles of

software design that have been applied in this research. These concepts have been

described in adequate detail here and will be referred back to in later chapters.

3.1 Design patterns
At the heart of any software system is the data that it manipulates. In fact it can be

argued that the sole purpose of computer software is invariably data processing.

Hence it is vital to try and model the data in such a way that it leads to the optimal

performance of the surrounding software system. It was this need is what spurred the

creation and rapid adoption of object-orientated (OO) design software platforms like

Smalltalk, C++ and Java. As OO software methodologies became widely adopted,

several reoccurring design problems became obvious. In 1995 the book “Design

Patterns: Elements of Reusable Object-Orientated Software” [58] published 23

patterns that allowed for the creation of more flexible, elegant and ultimately reusable

designs. Independent studies have since shown that in general it is beneficial to use

these design patterns over simpler methods even when the actual design problem is

simpler than that solved by the pattern [59, 60]. Many of these patterns have been

successfully employed in this application, with a description of the most significant

ones given in the following sub-sections.

3.1.1 Façade design pattern
One of the key novelties of the system developed in this project stems from

employing the Façade design pattern. In simple terms the façade pattern is a single

class that masquerades the functionality of several sub-systems through a unified

interface. Example sub-systems could be persistence layers. While not being

processed, the data samples need to be stored to disk. However there are many forms

in which the data can be persisted. For a web-based system backed by an application

server, the persistence layer in the eyes of the client is by way of Enterprise Java

28

Beans. However the EJBs themselves are not data persistence objects but merely

gateways to underlying databases. For stand-alone applications, the persistence layer

will be the local or network file system where data can be stored in either ASCII or

binary forms. Hence the point being emphasised here is that the same data can be and

may need to be persisted in several different forms. In fact all data models in this

project can be stored in 4 forms, namely serialized straight to disk, in proprietary

XML, to an SQL complaint database or by way of EJBs – which may use either SQL

or XML at their backend. In the façade pattern, an interface is created defining the

functionality of the persistence layer in terms of method calls. Hence rather than

referring to the actual object responsible for reading and writing to the appropriate

persistence layer, the application will converse with the interface. The interface will

then reference an instance of the object responsible for the correct persistence type.

The actual persistence object will generally extend an abstract class that will

implement the functionality common to all persistence methods.

EJB
Server

SQL
Database

Persistence
Interface

XML
Files

Data
Controller

Local
text/binary files

Figure 3-1
Façade design pattern applied to data persistence

Figure 3-1 shows how the Façade design pattern has been applied to the task of data

storage. The client application may need to store data in one of many locations

depending upon its current run-time condition. While downloading data from the

server, it will need to interface with the EJB container. But to conserve memory on

the client workstation, it may be necessary to temporarily flush the data to local

storage such as its hard disk. To save and reload the data the persistence mechanism

29

must change, for example to an XML description. As this project makes extensive use

of the MVC design pattern, all data has a corresponding controller. One of the tasks of

the controller is to interact with the appropriate data storage mechanism. The

controller will maintain a single instance of an object that implements the storage

interface. From Figure 3-1 it can be seen that four objects implement this interface,

one for each type of data storage. Adapting the controller for a new type of data

persistence layer is simply a matter of updating the storage object instance variable.

3.1.1.1 Stand-alone client application
of the façade design pattern, the client

3.1.2 Observer design pattern and model-view-controller
ed software is

severely restricted.

Through extensive and intelligent use

application has been made dynamically reconfigurable to operate in one of several

environments. Its primary mode of operation is in client-server configuration where

the façade effectively hides the server from the client. In another mode, the client can

operate independently of the enterprise application server interacting directly with

EDA tools available on the LAN and obtaining its IP catalogue information straight

from the database via JDBC. This was easily possible as the database integration logic

was readily available as the EJB persistence model uses BMP as opposed to CMP. In

its 3rd mode, the IP catalogue information can be sourced from locally available XML

files.

A popular and well known data interaction paradigm in object-orientat

the model-view-controller (MVC) architecture [61]. Originally developed for the

Smalltalk-80 language, the MVC architecture ensures that the data (model), the data

manipulators (controller) and data visualisations (view) are all modularised into

separate entities. In simple software applications these three functions are typically

combined inside a single object. For example, a GUI panel used to set a series of

values will maintain corresponding instance variables for those values. Interactive

manipulation of the widgets on the panel will then directly control these values and

update the view in the panel. However this approach has several drawbacks.

Debugging the application is considerably more difficult because the code

maintaining data integrity is mixed with that necessary for visualisation and control.

Additionally the versatility, adaptability and scalability of the application will be

30

Controller
data manipulators

Model
the data sets

View
visual representations

of the data model

Figure 3-2
Model-View-Controller architecture

Figure 3-2 above depicts th el, view and controller. In

e MVC implementation, the model refers to the actual data to be manipulated by the

aining an instance of it is via a public static

e relationships between the mod

th

software. Generally there is a single model class in the MVC architecture, although

multiple domain models have been implemented with varying degrees of success [62].

A custom class will be created with the appropriate instance variables and

corresponding get/set methods for the particular data in question. Each object instance

of this class will then represent one piece of data. These data objects are made

observable (by extending the java.util.Observable class), meaning that they

will notify all observers (objects that implement the java.util.Observer

interface) of any changes that are made to them, in accordance with the observer

design pattern. An observer is any ‘listener’ whose purpose is to give a visual

representation of the data and hence implements the ‘view’ aspect of the MVC. This

can for example be a panel giving a text description of the data, or maybe a pie chart

or any other means of data presentation. Each model can have an unlimited number of

views listening to it, meaning that several GUI panels can be updated immediately

any changes to the data take place. This loose coupling mechanism defined by the

observable design pattern ultimately allows for optimal flexibility as additional views

can be added as and when needed. If this architecture is strictly adhered to, the only

means of modifying the data is by way of the controller. The controller is typically a

singleton object and implements all the necessary logic to process the user input.

3.1.3 Singleton design pattern
A singleton object is the sole instance of a particular class. There is no public

constructor and the only means of obt

method, usually called getInstance(). Calls to the get instance method will

31

return the single instance object of that class, creating it if necessary using a private

constructor.

3.1.4 Factory design pattern
t he type of object sub-class to be determined at

3.2 Serialization
o t ture of the software that has been developed, all data model

to maintain two

would then be updated after it is downloaded again.

The fac ory design pattern enables t

application run time. This has been extensively used for component modelling and

symbol schematic generation. For example if the user wishes to insert a FIFO into

their design, the factory will create a FIFO symbol object enabling it to be correctly

rendered on the drawing area.

Due t he web-based na

objects had to be designed in such a way that they can be sent across networks. In java

this means that all data models must have the ability to be directly translated into a

sequential data stream. This is a process known as serialization and can be applied to

any objects that implement the java.io.Serializable interface. However for

an object to be truly serializable, all other objects stored or referenced in instance

variables within that object must also be serializable. Unfortunately this relegates all

GUI classes in the javax.swing package, as none of them implement the

serializable interface. You may think that this will not be a problem as long as we

don’t store references to any swing components. But remember from section 3.1.2

that all these models adhere to the MVC architecture and all view components

registered with a data model are typically swing components. Hence attempting to

directly serialize these data models to a stream will almost always fail. One potential,

but not very elegant, solution to this problem would be to delete the references to all

observers before serialization and subsequently them reinstate them.

The chosen solution for all data models that need to be serialized is

independent instances of them. The main instance would integrate with the MVC

environment while the second would only maintain a copy of the original’s data

excluding references to non-serializable objects. On occasions when information has

to be uploaded to the server, the data values in the clone would be updated to match

those of the master copy and it would then be serialized and transmitted. If the

information is modified by the server, the data values in the client’s master copy

32

3.3 Enterprise Java Beans (EJB)
Enterprise Java Beans, first introduced in 1997, is a means of abstracting data and

 object technologies. At the time this

ally an interface to a set of data that defines a concept

ation tier in an enterprise system. On the server there exists an

J every object of information – generally meaning a record in a

y upon the container to implement the data-access calls to their

r is supplied to the

r y simplifies the EJB development

 the persistence layer interaction code into

the bean itself. This is generally by way of JDBC calls to the underlying database and

requires more effort from the developer’s point of view.

transactions which are based on distributed

technology saw the convergence of transaction processing monitors and distributed

object services including CORBA and RMI. Now EJB has established itself as one of

the most important enterprise technologies, becoming a de facto standard with the

release of version 1.0 in 1998. The application described in this thesis complies with

latest specification – that being version 2.0. EJBs are server-side component models

that operate within the confines of a dedicated container, generally called an

application server. This application server is the runtime environment for EJBs and is

responsible for providing life-cycle management, accounting for transactions,

persistence, concurrency and security. There are essentially two types of

EJB – session and entity.

3.3.1 Entity EJB
An entity EJB is essenti

representing the inform

entity E B for each and

database. Within the context of this project an entity could be a single IP macro-

component. There are two persistence models for entity EJB – container managed and

bean managed.

3.3.1.1 Container managed persistence (CMP)
CMP EJBs rel

persistent data sources. Information about the persistence laye

containe when the beans are deployed. This greatl

process and extends its portability. If for example the back-end persistence layer

changes, perhaps from one database vendor to another, only the container needs to be

updated while the EJBs remain the same.

3.3.1.2 Bean managed persistence (BMP)
With BMP the bean developer must write

33

3.3.2 Session EJB
Session EJBs are generally used to provide access to server-side resources including

entity EJBs and workflows. A workflow is a way of describing a task to be performed

in the server. An example workflow could be performing verification or synthesis on

 are essentially two forms of session bean – stateful and

s

ese beans also tend to be general purpose and are not dedicated to any one

particular client.

ariables only have the lifespan of the bean itself, meaning they are

not written to a persistence layer when the bean is no longer needed.

ates to the EJB

entation.

rite operation may update fields in one table and then fail before the

spo nother table are revised. To circumvent this, the use of

cti rated at the database level. Transactions wrap multi-table

behalf of a client. There

stateles .

3.3.2.1 Stateless
A stateless session bean maintains no state between its method calls. It executes a

single method and returns it result without affecting the state of the object – as it has

no state. Th

3.3.2.2 Stateful
Stateful beans are dedicate to a particular client and maintain conversational state –

meaning they are objects that can hold instance variable that can be set by the client.

However these v

3.3.3 EJB container
Clients interact with EJBs by way of the container. When attempting to access an EJB,

the container will return a remote reference to that EJB. The client can then invoke

methods in that remote reference, which the container then deleg

implem

3.4 Transactions
As will be demonstrated in Chapter 4 and Chapter 6, the server-side data is stored in

the database across multiple tables. This presents a potential opportunity for data

corruption as a w

corre nding fields in a

transa ons has been integ

data modification operations into a single atomic operation. Within a transaction

based environment, individual updates and inserts are sent to the database server and

then ‘committed’ if all constraints are met, or ‘rolled-back’ if a failure occurs. A

typical failure would be an invalid foreign key constraint. For a database to correctly

34

support transactions, it must be ACID compliant – Atomicity, Consistency, Isolation

and Durability [63]. ACID transactions are supported in MySQL if InnoDB table

types [64] are used.

Within typical J2EE environments, atomicity and transaction support is implemented

at the application server container level using container managed persistence (CMP).

Unfortunately Borland’s Enterprise Server does not support CMP with non-

commercial databases, such as MySQL, and transaction management had to be

manually designed in using bean managed persistence (BMP).

 expressions are a type

of formula for matching strings that follow some sort of pattern. The regular

ssi mal characters and metacharacters to describe the

 or more characters from 0 – 9 followed

y a period and then a second group of numerical characters.

This research has been deve tform, which has no direct

support for regular expressions. Hence regular expression functionality was

3.5 Regular expressions
Several parts of this project necessitate the parsing of data from text files. An example

of this is extracting module structure information from Verilog source files. The

approach adopted was to use regular expressions [65]. Regular

expre on will use a series of nor

pattern to be captured. Normal characters are numerical digits and upper and lower

case letters. Metacharacters are characters and sequences of characters that have

special meanings. A full description of regular expressions is beyond the scope of this

text, but a example will be provided as follows. To find a floating point number the

following regular expression could be used:

"([-]?[0-9]+[.][0-9]+)"

This statement means that the minus sign is optional, as denoted by the question mark.

A floating point number is then made of one

b

loped using the Java 1.3.1 pla

incorporated using a third party package called Jakarta ORO [66]♣. As of Java

version 1.4.1, regular expressions have become a natively supported feature.

♣ The Jakarta license can be found in Appendix D.

35

3.6 Summary
This chapter presented some of the general concepts and techniques applied

throughout the thesis. Rather than repeatedly describe them throughout the body of

the text, they have been described here and back references made where necessary.

One of the strategies leading to a highly flexible and scaleable platform stems from

the use of design patterns. From the 23 published patterns, 4 have been extensively

applied, these being the façade, MVC, singleton and factory design patterns.

All services on the enterprise application server are constructed from EJBs. A very

general overview of the main EJB technology incorporated in this work was presented.

CMP is the preferred means of entity management as it simplifies bean development.

BMP involves manually crafting the EJBs database transaction logic in the java

source files. Using BMP means that the database integration classes can also be made

directly accessible to the client, allowing it to be reconfigured in a stand-alone mode

through design pattern implementation.

36

Chapter 4

platform

ound this topology.

.1.1 Macro-component directory structure
Figure 4-1 shows the directory structure naming conventions imposed upon the

macro-components. Each macro-component resides within its “module home”

directory under which all its supporting files are located. The structural hierarchy of a

module home is depicted in Figure 4-1. Nested inside a module home are a further

four directories.

1. RTL

Server-side IP-libraries

Section 1.3.7 highlighted the fact that the current range of macro-components has

been divided into four IP libraries. To integrate these libraries into an EDA

their contents must be carefully structured and catalogued.

4.1 Library file structure
An IP library is a location on the file system containing the home directories of all

macro-components belonging to it. The structure of a library and its macro-

components must be strictly defined to ensure seamless integration with the

appropriate server beans, which have been architected ar

4

The RTL directory houses the Verilog source file and optional dependency link

file. To be compliant with the QIP standard defined by the VSIA organization [9]

the Verilog source file must have the same name as the top module defined inside

it. If the module instantiates dependency sub-modules, a link file called

verilog_dependency.lst, must also be provided in the RTL directory.

These link files will be described in section 4.2.

2. Simulation

The simulation directory contains the necessary routines to functionally verify the

macro. This will include a Verilog testbench and optional input data files. A

37

golden output reference file can also be provided against

results can be compared.

3. Synthesis

 which the simulation

The syn directory maintains all fil

4. Documentation

es related to the synthesis procedure.

4.1.2
Dur he location of the IP libraries and

the macro-component file system topology defined in section 4.1.1. This information

ed into the appropriate EJBs, but doing so would limit the flexibility,

sca

libr

singleton design pattern described in section 3.1.3, making it an independent entity

The documentation directory, called doc, contains any documentation associated

with the core in PDF and XML forms.

${module_name}

RTL

${module_name}.v

verilog_dependency.lst

doc

doc.xml

doc.pdf

${module_name}.tb.v

input.dat

output.golden.dat

sim

syn

${module_name}.${technology}.net.v

SDF files

Figure 4-1
Directory and file structure of macro-component

 Library manager
ing runtime operation the server needs to know t

can be hard-cod

lability and portability of the application. Hence a system based upon a dynamic

ary manager utility was investigated. The library manager is built upon the

38

ava

In f akes it independent of the enterprise server itself. It can

lled directly from the schematic capture environment allowing the

IP library path and structure information to be available without the need to query the

application server. This is one of t

e design environment independent of the server. Figure 4-2 shows

how

patt gn pattern, introduced in section 3.1.1, to

t-server and standalone configurations.♣

The task of the lib lled IP libraries and

the topology a

used to cache

+------------------+---------------------+------+-----+---------+-------+
Library_ID	varchar(50) binary		PRI		
Library_Name	varchar(50) binary		UNI		
Available	tinyint(1)			0	
HDL	varchar(20)	YES		verilog	
Library_Path	varchar(255) binary	YES		NULL	
Source_Path	varchar(255)	YES		NULL	
Source_File	varchar(255)	YES		NULL	

archar(255) | YES | | NULL | |
archar(255) | YES | | NULL | |
archar(255) | YES | | NULL | |

ilable at all points in the application without the need to propagate references to it.

act this arrangement also m

therefore also be ca

he key characteristics of the software enabling

standalone use of th

 the client circuit development environment makes use of the singleton design

ern in conjunction with the façade desi

facilitate both clien

Enterprise
application server

Design environment

Figure 4-2
Library manager interaction using the façade design pattern

rary manager is to cache the paths to all insta

 of the macros in each library. Figure 4-3 shows the database schem

 the appropriate library information.

+------------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |

| Sub_Modules_File | varchar(255) | YES | | NULL | |
| Stimulus_Path | v
| Stimulus_File | v
| Test_Bench_Path | v
Test_Bench_File	varchar(255)	YES		NULL	
Doc_Path	varchar(255)	YES		NULL	
Doc_File	varchar(255)	YES		NULL	
Description	text	YES		NULL	
+------------------+---------------------+------+-----+---------+-------+

Figure 4-3
Database schema for IP library information

♣ Note that the design environment can only be used in one configuration at a time. It must be launched in the appropriate
manner to be used in either client-server or standalone configurations.

Façade

App server
interface

Lib manager
interface

Design
control

routines
Library

Manager

39

A screen shot of an application developed to configure an IP library can be seen in

Figure 4-4. This is part of the IP cataloguing application that will be described in

section 4.5.6

Figure 4-4
Library manager configuration window

ponents are defined relative to the

hen the path to a macro is needed, as will be the case

for verifica pplication.

The library o identify

each librar le, for the

libraries de

To maximize portability the paths to all macro-com

library to which they belong. W

tion and synthesis, a request will be sent to the library manager a

 manager caches the paths to all libraries using a set of keys t

y in a look-up table. The library manager start-up configuration fi

scribed in section 1.3.7, can be seen in Figure 4-5.

40

Figure 4-5
Library path configuration file

4.2 Module dependency handling linker
A fundamental characteristic of the macro-component libraries is the inherent

hierarchical structure. There is a great deal of interdependency between the various

macro-modules in each library and the corresponding caches, and also between the

high-level libraries and the underlying foundation library. It is however this

hierarchical relationship that gives these libraries their flexib d low-power

characteristics. Smaller macros are u building blocks for the larger cores.

Low power optimizations in sub-blocks are inherited by the large blocks

corporating them.

synthesis typically use

various shell scripting languages such as Perl, Make, TSCH, BASH or TCL. Although

very capable in their own right, they are not directly suitable for this project as they

are not directly supported by the application server.

#--
Library paths configuration file

sg_foundation_1 = M:/Libraries/foundation
sg_foundation_cache_1 = M:/Libraries/foundation_cache
sg_signal_processing_1 = M:/Libraries/signal_processing
sg_signal_processing_cache_1 = M:/Libraries/signal_processing_cache
sg_communications_1 = M:/Libraries/communications
sg_communications_cache_1 = M:/Libraries/communications_cache
sg_image_processing_1 = M:/Libraries/image_processing
sg_image_processing_cache_1 = M:/Libraries/image_processing_cache

ility an

sed as the

in

The architecture of the IP server must be able to cope with this hierarchical library

structure. If a user builds a design on their client application and decides to

functionally verify it, the server must be able to locate and link together all the

necessary dependency modules. Commercially available EDA integrated development

environments (IDE) use their own internal proprietary linking mechanisms. HDL

developers relying on the command-line for compilation and

41

Figure 4-6
Sub-module dependency list file for an FFT

sg_signal_processing_cache_fft_1 sg_commutator1_fft64p_t_4

sg_signal_processing_cache_fft_1 sg_butterfly_fft_tpo_radix4

sg_signal_processing_cache_fft_1 sg_modcmultiplier_fft_booth_wallace_16

sg_signal_processing_cache_fft_1 sg_commutator2_fft64p_t_4

sg_signal_processing_cache_fft_1 sg_multless_fft64p_po_16

sg_signal_processing_cache_fft_1 sg_commutator3_fft64p_a_4

sg_foundation_1 sg_flipflop_d

 custom linking application has been developed for this project based on very simple

hese scripts contain a single row

all direct dependencies are in the

 be re-verified and synthesised. If

the FFT happens to be part of a larger system, typical applications including OFDM

and CDMA, the change will be automatically adopted. Obviously this will have

implications for version control and regression testing, but this is outside the scope of

this thesis.

A

dependency script files like the one in Figure 4-6. T

entry for each direct dependency of the macro-component. Each entry defines the

name of the dependency module and the library ID of the library it belongs to. The

linker application reads these files and queries the library manager to build the

corresponding dependency tree. Entries in the dependency file represent branches in

the tree. After resolving the path to a dependency, dependencies of that dependency

are also resolved and added as sub-branches to the tree in a recursive manner.

Figure 4-7 shows the dependency hierarchy for the FFT whose dependency file is

shown in Figure 4-6. As can be seen in the figure,

first row of the graph. Subsequent rows in the graph represent the rest of the hierarchy

for the entire FFT architecture.

This hierarchical linking mechanism makes this tool much more powerful and

scaleable than traditional script-based design practices. Referring to the FFT example

in Figure 4-7, the performance of the architecture can be radically changed by

substituting the multiplier with an alternative from the library. This change can be

implemented by simply replacing the sg_modcmultiplier_fft_booth_wallace_16

with the new module and updating the single entry one dependency file, a process

which only takes a few minutes. The design can then

42

sg
_d

ec
od

e_
bo

ot
h

(s
g_

fo
un

da
tio

n_
ca

ch
e_

1)

sg
_c

om
m

ut
at

or
2_

(sg
_s

ig
na

l_
pr

oc
es

sin
g

fft _c
a64

p_
t_

4

ch
e_

fft
_1

)

sg
_m

u

(sg
_f

ou
nd

ax_
4 tio
n_

1)

sg
_m

ux
_3

_f
ou

nd
at

io
n_

1)
(s

g

sg
_m

ux
_2

(sg
_f

ou
nd

at
io

n_
1)

sg
_l

at
ch

(sg
_f

ou
nd

at
io

n_
1)

sg
_f

lip
flo

p_
d

(sg
_f

ou
nd

at
io

n_
1)

sg
_c

om
m

ut
at

or
3_

fft
64

p

(sg
_s

ig
na

l_
pr

oc
es

sin
g_

ca
ch

_a
_4

e_
fft

_1
)

sg
_b

ut
te

rfl
y_

fft
_t

po
_r

ad
ix4

(sg
_s

ig
na

l_
pr

oc
es

sin
g_

ca
ch

e_
fft

_1
)

sg
_v

ec
to

rsu
m

(sg
_f

ou
nd

at
io

n_
1)

s

(sg
g

ad
de

r_
fu

ll

fo
un

da
tio

n_
1)sg

_m
od

cm
ul

tip
lie

r_

_p
ro

ce
ss

in
g_

ca
ch

e_
fft

_1
)

fft
_b

oo
th

_w
al

la
ce

_1
6

(sg
_s

ig
na

l

sg
_m

ul
tip (sg

lie
r_

bo
ot

h_
w

al

_f
ou

nd
at

io
n_

1la
ce

_1
6

)

sg
_s

ub
tra

ct
or

(sg
_f

ou
nd

at
io

n_
1)

sg
_w

al
la

ce
_t

re
e_

st
ag

e_
4

(sg
_f

ou
nd

at
io

n_
ca

ch
e_

1)

sg
_a

dd
er

_h
al

f

(sg
_f

ou
nd

at
io

n_
1)

sg
_w

al
la

ce
_t

re
e_

st
ag

e

(sg
_f

ou
nd

at
io

n_
ca

ch
e

_3 _1
)

sg
_f

ft_
64

p_
rw

_3
2

(sg
_s

ig
na

l_
pr

oc
es

sin
g_

1)

sg
_m

ul
tle

ss
_f

ft6
4p

_p
o_

16

(s
g_

sig
na

l_
pr

oc
es

sin
g_

ca
ch

e_
fft

_1
)

sg
_c

om
m

(sg
_s

ig
na

l_
pr

out
a

ce

to
r1

_f
ft6

4p
_t

_4

ss
in

g_
ca

ch
e_

fft
_1

)

sg
_w

a
st

ag
e_

2

(sg
_f

o
ac

he
_1

)

lla
ce

_t
re

e_

un
da

tio
n_

c

sg
pp

g_
bo

ot
h

(sg
_f

ou
da

tio
n_

ca
ch

e_
1)

_ n

s (g_
w

al
la

ce
_t

re
e

sg
_f

ou
nd

at
io

n_

_s
ta

ge
_1

ca
ch

e_
1)

sg
_c

la
_b

lo
ck

_2

(sg
_f

ou
nd

at
io

n_
ca

ch
e_

1)

sg
_c

on
di

nv
er

t

(sg
_f

ou
nd

at
io

n_
1)

sg
_n

ot

(sg
_f

ou
nd

at
io

n_
1)

sg
_c

la
_b

lo
ck

_

(sg
_f

ou
nd

at
io

n_
ca

ch
e_

1)

1

sg
_m

ul
ti (spl

ie g_

rp
_b

oo
th

_w
al

la
ce

_1
6

fo
un

da
tio

n_
1)

sg
_a

dd
er

_c
la

_3
2

(sg
_f

ou
nd

at
io

n_
1)

sg
_a

dd
er

_c
s

(sg
_f

ou
nd

at
io

n_
1)

sg
_r

ec
od

e_
bo

(sg
_f

ou
nd

at
io

n_
ca

cot
h he

_1
)

Figure 4-7
Dependency hierarchy for an FFT

43

4.3 Component cataloguing
As clients use the service they will want to know what macros are available and what

their interfaces look like. It is possible to build this information from the file system

as requests are made, but it would waste significant resources to do so. The optimal

strategy is to catalogue all relevant information into a database which will then be

interrogated, via the application server, by client requests. The following sections

describe the information that has been catalogued.

4.4 Component categories
Typically when an IP vendor releases a library, it will simply be a large collection of

component cores, possibly catalogued in a manner similar to the library structure

defined in section 4.1. One of the problems with this arrangement is that it can be

difficult to determine the nature of each library component without continually

referring to the accompanying documentation. For example, if the system designer

wishes to instantiate a multiplier complying with a particular specification they need

to be able to identify and discriminate between all available multipliers in the source

library. Sometimes depending upon the naming convention adopted by the vendor, it

can be possible to guess the type of component based upon its name, for example, all

multipliers may have a name starting with “mult”. Some of the currently available

EDA tools attempt to pick up on this and make a rudimentary attempt to classify

components based upon their names.

One of the novel aspects of this EDA solution is the inherent ability to allow for the

classification of components into distinct categories. A category is essentially a

template defining the interfacing characteristics of a type of component. Given an IP

library, it may for example contain several multipliers. A multiplier has a well-defined

purpose – take two values and multiply them together to produce a resultant product.

However, architecturally a multiplier can be realised using a number of different

algorithms, such as Booth, Wallace array etc., to achieve certain goals such as speed

and performance, reduce power consumption or minimise the silicon area footprint

while retaining the functional specification. Neglecting the internal architecture, the

functionality and interface to the component will remain constant, that is it will have

two inputs, a carry in and an output product. This being the case, it is theoretically

possible to simply replace ny other multiplier in the a multiplier in a design with a

44

library, providing of course that the design specification can still be met. With this in

ot specific to

individual libraries. Being general-purpose component type descriptions, it makes

ve them apply to any and all available libraries.

mind, a multiplier category can be defined to represent all multipliers in the available

libraries. The same principle holds true for other types of components such as adders,

counters, FFTs and receivers to name a few.

4.4.1 Category modelling
Categories are globally defined entities meaning that they are n

sense to define them only once and ha

Hence several libraries may contain components conforming to the same category or

conversely a given category type may only reside in a single library.

Within the EDA environment, a category has been modelled using a category model

object. Figure 4-8 shows a simplified UML diagram depicting the adopted models for

a category and its associated ports. Every category has a name by which it is

referenced, for example, a suitable name might be “multiplier”. As the name acts

as the primary key in a category search, it is important that all category names are

unique. In addition to the name, the category model also houses an array of objects

defining the characteristics of all available ports. The characteristics of the ports will

be described in the following sections.

CategoryPortModel
INPUT
OUTPUT

Port Name
Direction
Optional
Inverted
Group

string
string

string
string
boolean
boolean
boolean

CategoryModel
Category Name
CategoryPortModels

 string
array

Figure 4-8
Simplified UML diagram of a CategoryModel

and CategoryPortModel objects

Figure 4-9
Screen grab of category manager application

45

4.4.2 Category port modelling
The category port model is used to describe the characteristics of each port on a

component conforming to a particular category. The model has five variables that

describe a port and any constraints to which it must comply. These are described as

.

he carry out of a

To allow for a degree of flexibility in the definition of categories, it is possible to

specify some ports as being optional. An example of an optional port is the enable

signal on a multiplexer. Rather than having to define separate categories for

multiplexers with and without enables, it is more convenient to define a single

category which has one or more optional ports.

• Inverted

Inverted ports are normally denoted on schematics through the use of a circle on

the port symbol. A classic example of an inverted port is the output from a

NAND gate

• Group

A category does not strictly define the number of ports a component can have. An

n number of ports is a multiplexer.

Th s on a multip

any positive integer. Rather than define separate categories for each multiplexer

follows

• Name

Every port in a category model is identified by its name and as such each port

defined in a category must have a unique name attribute. Although there is no

strict guideline on naming conventions, it is recommended that the chosen port

name reflects its intended purpose. For example a port acting as t

category of component should preferably be called “carry out”.

• Direction

A port is basically a interconnect interface that allows for the propagation of

signals in a pre-determined direction. Permissible port directions are input and

output. Provision has also been made for inout ports, however these are unlikely

to ever be used as they cannot always be directly synthesized.

• Optional

example of such a component with an unknow

e number of data input port lexer can theoretically range from 2 to

46

size, it is better to specify a single port model representing all the data inputs and

ation to a local XML file, directly into the database or

through the EJB container using the façade design pattern. Figure 4-10 shows the

sentation of the category model for a multiplier. There will be a separate

cate

For

data

+
|
+------------------+--------------------------------+------+-----+---------+----------------+
| Category_ID | int(11) | | PRI | NULL | auto_increment |
| Category_Name | char(50) | | UNI | | |
+------------------+--------------------------------+------+-----+---------+----------------+

Figure 4-11

+
|
+------------------+--------------------------------+------+-----+---------+----------------+
Category_Port_ID	int(11)		PRI	NULL	auto_increment
Port_Type	char(25)				
Port_Direction	enum('input','output','inout')	YES		NULL	
Collection	tinyint(1)			0	
Optional	tinyint(1)			0	
Inverted	tinyint(1)			0	
+

assign a group attribute.

Figure 4-9 shows a snapshot of a GUI application that allows categories to be created

and visualized. This application builds upon the MVC architecture and can import and

export the category inform

XML repre

gory entity for each type of component.

Figure 4-10
XML model of a multiplier category model

egory name="Multiplier" rank="3" accessibility="public">
ort index="1" name="carry in" significance="none" direction="input" group="false"
optional="false" inverted="false" />

ort index="2" name="input a" significance="none" direction="input" group=
optional="false" inverted="false" />

"false"

ort index="3" name="input b" significance="none" direction="input" group="false"
false" inverted="false" /> optional="

ort index="
group="false" optional="false" inverted="false" />

4" name="product" significance="none" direction="output"

tegory>

 persistence using either the EJB container or directly to and from the database, the

base schemas of Figure 4-11 and Figure 4-12 have been implemented.

------------------+--------------------------------+------+-----+---------+----------------+
 Field | Type | Null | Key | Default | Extra |

Database schema for category model

------------------+--------------------------------+------+-----+---------+----------------+
 Field | Type | Null | Key | Default | Extra |

 Category_ID | int(11) | | MUL | 0 | |
------------------+--------------------------------+------+-----+---------+----------------+

Figure 4-12
Database schema for a category port model

47

4.5
To capture the characteristics and attributes of the individual macros, a component

tecture. The supported persistence layers

re XML, EJB via the application server and direct database integration. The original

l is derived ng a on that parses the Verilog RTL source

file des the m hen a client wishes to incorporate a module into their

design, they do so by download the appropriate component model from the server. A

detailed diagram ng the component model class and all its interactions can

be foun igure 4

 Component model

model has been developed. This component model maintains all information about a

module that will enable it to be used as a black-box object in a client design. This

means that all input/output (I/O) ports and parameterisation values are included in the

model.

Figure 4-13 shows the various interactions of the component model, which is

designed in accordance with the MVC archi

a

component mode usi n applicati

cribing odule. W

 UML showi

d in F -22.

Database

Client
Application

IP Shells GUI

`define width 16
`define addr 3

module mux_8to1 (out,
 in_000, in_001,
 in_010, in_011,
 in_100, in_101,
 in_110, in_111,
 sel);

dth =`width; parameter wi
 parameter addr =`addr;

 input [width-1:0] in_000, in_001, in_010, in_011,
 in_100, in_101, in_110, in_111;

 input [addr-1:0] sel;
 output [width-1:0] out;
 reg [width-1:0] out;

Component
Model

Fi r

fro e

4-15. The database schem odel and not its

ssociated parameters and ports. The schemas for these models will be shown and

described in sections 4.5.1 and 4.5.2 respectively.

Figure 4-13
Component model and its integration with the environment

gure 4-14 shows an XML persistence model for a 16-bit carry-look-ahead adde

m the foundation library. The corresponding database schema is shown in Figur

a shown is only for the component m

a

48

Figure 4-14
XML example of a component model

<?xml version="1.0" encoding="UTF-8" ?>
<components>
 <component category="Adder" name="adder_cla_16bit">
 <library ID="sg_foundation_1" />
 <parameters number="1">
 <parameter name="width">
 <attributes type="INTEGER" signed="false" size="32" base="10" />
 <decimal_value default="16" current="16" />
 <argument index="1" />
 </
 </p

parameter>
arameters>

width" />
alse" />

 <argument index="3" />
 </port>
 <port name="input_carry" direction="input">
 <category type="carry in" />
 <width expression="1" />
 <inverted negate="false" />
 <argument index="4" />
 </port>
 </ports>
 </component>
</components>

 <ports number="4">
 <port name="output_sum" direction="output">
 <category type="sum" />
 <width expression="width" />
 <inverted negate="false" />
 <argument index="1" />
 </port>
 <port name="input_a" direction="input">
 <category type="input a" />
 <width expression="width" />
 <inverted negate="false" />
 <argument index="2" />
 </port>
 <port name="input_b" direction="input">
 <category type="input b" />
 <width expression="
 <inverted negate="f

49

+-------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+-----------------+------+-----+---------+----------------+
| Component_ID | int(11) | | PRI | NULL | auto_increment |
| Compon
| Category_ID 11)
| Availa
| Last_Modified
| Doc_ID
| Doc_Last_Modif amp(14) | ULL
 Library_ID 0) bina |
-------------------+- --------

nent model alw

r this model to work ther

ponent m

are sub-direc

a m

de for a par

 its library ID

to a

arameter m
 in

ent_Name | char(50) binary | | MUL | | |
 | int(| | MUL | 0 | |

ble | tinyint(1) | | | 0 | |
 | timestamp(14) | YES | | NULL | |

 | int(11) | YES | | NULL | |
ied | timest | YES | N | |

| | char(5 ry | | | |
+ ------ --+------+-----+---------+----------------+

Figure 4-15
Component model database schema

A compo ays refers to a single named module in a Verilog source file.

Hence fo e must be a means of identifying the correct RTL

code from any given com odel. Remembering from section 4.1 that all

modules tories inside a library directory, it is possible to uniquely

identify acro-component from its module name and library ID. To retrieve the

source co ticular macro, the library manager can be queried using module

name and . As shown in section 4.1.2 the library manager can resolve the

full path library from a library identifier string.

4.5.1 P odelling
As stated section 1.3.2 many of the macro-components are parameterisable. To

enable the parameterization in this platform, the characteristics of each parameter

must be catalogued. Figure 4-16 describes the database schema employed for the

persistence of module parameters. Section 3.11 of the IEEE Verilog Standard [69]

defines the full specificati is application at this time

only implements a sub-set of this specification. However sufficient functionality is

plemented to cover all parameter usage in the macro-component libraries.

+-----------------+------------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+------------------------+------+-----+---------+----------------+
Parameter_ID	int(11)		PRI	NULL	auto_increment
Parameter_Name	char(20) binary				
Value_Type	enum('INTEGER','REAL')			INTEGER	
Signed	tinyint(1)			0	
Value_Size	int(11)			32	
Default_Value	char(30)				
Base	int(11)			10	
Parameter_Index	int(11)			0	
Doc_ID	int(11)	YES		NULL	
Component_ID	int(11)		MUL	0	
+-----------------+------------------------+------+-----+---------+----------------+

Figure 4-16
Parameter model database schema

on of Verilog parameters but th

im

50

Each pa l either

represen e used,

includin

always b ginally

used bas he first

is to use the defparam statem

alues during the module instantiation. In this method the positional indexes of the

values in the instantiation string defines which values are applied to which parameters,

- --------------+------+-----+---------+----------------+
d | Null | Key | Default | Extra |
- --------------+------+-----+---------+----------------+

All ports are uniquely identifiable within a module using their names and can be

eration field is used to store the port direction.

Like p

instan not

recom mes.

All po ither

using odel

this flexibility, the width of the port sing width-expression string, which

can later be decoded into a n

rameter is uniquely identifiable within a module by its name and wil

t an integer or floating point number. Various number bases can b

g binary, octal decimal and hexadecimal, but the actual default value will

e stored in its decimal form with an additional field recording the ori

e. Parameter values can be specified in one of two ways in Verilog. T

ent. The second method is to pass in the appropriate

v

assuming that there is more than one. Hence the persistence layer also records the

parameter index value.

4.5.2 Port modelling
Interfacing macro-components in a design is by way of their ports. Hence all

information defining the characteristics of each port must be stored. Figure 4-17

shows the database schema for the port definitions.

+----- ------------+------------------
| Fiel | Type
+----- ------------+------------------
Port_ID	int(11)		PRI	NULL	auto_increment
Port_Name	char(30) binary				
Category_Port_ID	int(11)	YES		NULL	
Argument_Index	int(11)			0	
Direction	enum('input','output','inout')			input	
Width_Expression	char(200)				
Inverted	tinyint(1)			0	
Doc_ID	int(11)	YES		NULL	
Component_ID	int(11)		MUL	0	
+------------------+--------------------------------+------+-----+---------+----------------+

Figure 4-17
Port model database schema

either inputs, outputs or inouts. An enum

arameters, ports can be linked using their positional indexes in the module

tiation and so an argument index field is provided. However this is

mended practice and ports should instead be identified using only their na

rts on a module have a pre-determined width. This width can be specified e

integer values or me be compile time configured using parameters. To m

is defined u

umeric value.

51

4.5.3 Port width expression
If a module port is non-parameterisable its width will usually be specified using a

fixed range expression such as [15:0] implying a width of 16 bits. Parameterisable

ports will substitute one or more of the numeric values for parameter names, for

example [parameter_1:0]. In many occasions the port widths will involve

complicated expressions of both numeric values and parameter names. Figure 4-18

shows how the port widths of a fully parameterisable multiplier have been specified.

In this example, the width of product is twice the value of parameter word_size,

as defined using the expression [2*word_size-1:0].

Rather than storing a static n odel has a width expression

bject. The width expression object maintains a list of all parameters that have an

ation. A direct interpretation of these

modul multiplier(inpe ut_a, input_b, carry_in, product);

 input [word_size - 1:0] input_b;
 input carry_in;

 parameter word_size = 16;

 input [word_size - 1:0] input_a;

 output [2 * word_size - 1:0] product;

Figure 4-18
Parameter expressions used to define port widths

umeric value, each port m

o

influence upon it and a custom built calculator. This calculator, which is part of a

mathematics package JAR, is able to dynamically calculate the width of a port from

this expression.

Legal expressions can use any of the operators from the set {^ / * + -} and

braces to specifically define precedence where needed. Observe this set and you will

notice that the operators do not all have the same level of precedence. Division and

multiplication have a higher precedence that addition and subtraction while the power

operator (^) has the highest priority. But in the Verilog description, all mathematical

expressions are defined using an infix not

52

express ons will not always lead toi the correct result. For example directly equating

 resulting in 2 * 1 = 2. The value 2 is then pushed back

onto the evaluation stack before the next iteration of reading the postfix stack begins.

In the next iteration, the operator (-) is popped from the postfix stack. Again as this is

an operator as opposed to a numeric value, the top two values are popped from the

evaluation stack, these being 16 and 2, and equated using the operator to give

16 - 2 = 14 which is then pushed back onto the evaluation stack. As the postfix

ack is now empty, the final answer will be the single numeric value left on the

evaluation stack, this being 14.

tom made parsing application. The parser reads the Verilog files and

2*16-1 will give a value of 31 whereas 16-1*2 will yield the result 30 when it

should actually be 14. To account for operator precedence, an implementation of a

postfix calculator was developed.

A postfix calculator first takes the operators and operands of an infix expression and

compiles them into in a new order. An example of the reordering is shown below.

Infix expression: 16 – 1 * 2

Postfix equivalent stack: 16 1 2 * -

This postfix equivalent expression is then evaluated using a second stack. Numeric

value elements are popped off the postfix stack and pushed onto the evaluation stack.

In the above example, the values 16, 1 and 2 will be popped from the postfix stack

and pushed onto the evaluation stack. When the process comes across the operator (*)

the top values are popped from the evaluation stack, in this case 2 and 1, and the

operator applied to them –

st

4.5.4 Verilog parser
In order to initially construct the component model database, the necessary metrics

must be compiled from the Verilog source files. This is performed in an automated

stage using a cus

extracts the necessary information.

The first stage of the parser is to read the file into memory and remove any comments

from it. It is important to remove the comments as this will minimise later confusion.

For example, some sections of code may have been rendered inoperable by being

within comment blocks rather than having been physically removed. This is common

practice during design debugging stages. Rather than developing a more intelligent

53

parser, a simpler implementation can be realised if all comments are first removed. A

potential drawback to this is that all pseudo-comments will also be removed. Pseudo-

comments are special directives included within the source code intended for

particular EDA tools [70]. Embedded within comment blocks, these directives are

`define
`define
`define depth1 16
`define
`define
`define swidth 4

invisible to all tools except those specifically looking for them.

dwidth 32
width 16

depth2 8
cwidth 5

module fft_lp_64p (clk,in,Xfro,Xfio,reset);

 parameter dwidth = `dwidth;
 parameter depth1 = `depth1;
 parameter depth2 = `depth2;
 parameter swidth = `swidth;
 parameter cwidth = `cwidth;
 parameter width = `width;

→

module fft_lp_64p (clk,in,Xfro,Xfio,reset);

 parameter dwidth = 32;
 parameter depth1 = 16;
 parameter depth2 = 16;
 parameter swidth = 8;
 parameter cwidth = 5;
 parameter width = 4;

Figure 4-19
Example of definition expansion during pre-processing

The second stage performs pre-processing routines on the Verilog code. Pre-

processing is the task of identifying all macros defined in the source header

information and expanding this into the source body. An example of this expansion

process is demonstrated in Figure 4-19. As well as macro expansion, pre-processors

can generate blocks of code. Facilities for this are built into the VHDL language in the

form of generate statements. This capability is now also finding its way into some of

h s such as NC-Verilog from Cadence. Other generation

t ion of arrays of sub-module instances [71].

 to the directory structure defined in section 4.1.1

it can be seen that module name must be the same as the name of the home directory

the hig -end Verilog tool

capabili ies include expans

The third stage reads and caches all modules in a given Verilog source file. Although

not a recommended design practice, it is still possible to have several modules all

within a single source file. Referring

of the macro-component. Hence this module will be selected from the file by default,

although other modules can be extracted if necessary.

The fourth stage accepts the source for an individual module and parses it to extract

the information necessary to create a component model object. This is typically

54

performed using source code parsers which build syntactic level models. However a

lexical parsing approach is simpler to implement and often yields results comparable

to those of a traditional parser [72]. This application performs lexical parsing using

regular expressions to extract the necessary information. A list of some of the regular

expression patterns used to extract the necessary information is given below.

re-process pattern
^, \t]+)[\t]+([^\r\n]+)

n
([^, \t]+)[\t]*=[\t]*([^ +)

 \t]*(\\([^ +

\[[^\\]]+\\][\t\ \);]+);

Width pattern
 \[([^:]+):([^\]]+)\]

Integer pattern
 ([-]?[0-9]+)

le is known. A

expression pattern matching. A

set of regular expression patterns is maintained for each category in a separate

P
 `define[\t]+([

Parameters patter
 parameter[\t]+ ;]

Module pattern
 module[\t]+([^ \t\\(]+)[\\)] \\))*[\t]*;

I/O port pattern
 (input|output)([\t\n]*\ n]*|[\t\n]+)([^\"\\(\

Floating point number pattern
 ([-]?[0-9]+[.][0-9]+)

Equation pattern
 [\t]*([\+-])[\t([-]?[0-9]+)

4.5.5 Assigning category to component model
Having created a component model through parsing the Verilog source code as

defined in section 4.5.4 only the structural characteristics of the modu

subsequent stage to bind that component model to a category group is needed.

Category binding involves trying to match a component model to a category model

and then assigning that category model to the component model.

The category model described in section 4.4.1 defines the characteristics of a category,

but makes no attempt to correlate between components and categories. Mapping

components to categories is performed using regular

database table. The schema for this category pattern model is shown in Figure 4-20.

55

Note that a foreign key index to a library ID is provided. This means that a separate

set of category patterns can be stored for each library.

+-------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------------+-----------------+------+-----+---------+--------------
| Category_Pattern_ID | int(11) | | PRI | NULL | auto_incremen

--+
t |

| Category_Pattern_Regexp | char(250) | | | | |
| Library_ID | char(50) binary | | MUL | | |

 | int(11) | | MUL | 0 | |
-----+-----+---------+----------------+

0
Category pattern model database schema

ge involves attempting to match the macro-component name against

e library). An example

|seg)_[0-9]+tap_[0-9]+b_(gen|lp)_(booth|mult)

his expression expects the filter name to start with “fir_” followed by one of four

rs the number of taps and

 final sections of the pattern identify whether it is generic or

Assuming that the component name matches this

ttern, it may be an FIR filter. Final confirmation is by checking that the port names

t the database schema for the

 |
----------------+

| Category_ID
+-------------------------+-----------------+-

Figure 4-2

The mapping sta

each of the category name patterns (each belonging to the sam

of a regular expression pattern for FIR filters is shown below.

fir_(block|comb|conv

T

words describing the architecture. Next the pattern cove

word-size bit-width. The

low power and the multiplier used.

pa

also ma ch a set of port name patterns. Figure 4-21 shows

table used to store the category port name patterns.

+--------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+-----------------+------+-----+---------+----------------+
Category_Port_Pattern_ID	int(11)		PRI	NULL	auto_increment
Port_Pattern_Regexp	char(250)				
Category_Port_ID	int(11)		MUL	0	
Library_ID	char(50) binary		MUL		
+--------------------------+-----------------+------+-----+---------+

Figure 4-21
Category port pattern model database schema

If the macro-name matches a category name pattern but the number of ports is

inconsistent or do not match the port name patterns, the process will continue to

iterate through the remaining categories until it finds a compete match.

56

Assuming that a matching category is found, the name of that category is assigned to

the component model. In a similar fashion, the port models are bound to the correct

ort categories. This will later allow schematic capture symbols to be mapped over

the to

p

p of and bound to component models.

Figure 4-22

UML representation of a component model

57

4.5.6 Cataloguing application
Cataloguing the component models into the appropriate persistence layer is performed

using a GUI application specifically developed for the task. A screen-shot of this GUI

pplication, built around the MVC design pattern, can be seen in Figure 4-23. a

Figure 4-23
Library catalogue manager GUI

This tool has two panels. The panel on the left lists the libraries that have been

registered with the library manager. These can be edited using the panel presented in

Figure 4-4. The right-hand panel lists all macro-components belonging to the selected

library.

o update the database, the program will iterate through each of the selected macros

and insert them into the database if they are not already there, or update existing

entries if the source file’s last modified timestamp is not equal to that recorded in the

database for that component. Inserting new components into the database is relatively

straightforward, but updating is somewhat more complicated. For example, a

component which has already been stored in the database has now been extensively

modified. These modifications mean that the component now has less parameters and

less ports. All database entries for ports and parameters that have been removed from

the design also have to be located and removed from the database.

T

58

4.6 Component documentation
Even th most advanced IP cores are e of limited use if they are incorrectly interfaced

esignWare library from Synopsys, each high-level component is comprehensively

described in the form of an extensive PDF document. Each of the cores in the macro-

component library has supporting documentation, also in PDF files. Although not

implemented in this project, due to time restrictions, it should be possible to deliver

these PDF documents to the client application via the application server.

4.6.1 Entity based documentation model
The concept of an entity based documentation model is an attempt to assist design

engineers to rapidly use the macro-components. In this model each entity of a

component is independently documented. The top level entity of a component is the

component itself, for which there will be a supporting document. Ports and parameters

are then considered as entities of that component and each independently documented

When an engineer needs to know the hat a particular parameter has upon a

omponent for example, they can rapidly access it rather than searching through an

r components, parameters and ports respectively all have provision for

or not exploited to their full potential. Hence for end users to extract maximum

potential from their investment they will be expecting full supporting documentation

accompanying each and ever macro component. Typically, as in the case of the

D

.

influences t

c

overly comprehensive PDF file.

To facilitate rapid access to an entity’s documentation, it is all cached in the server-

side database. From Figure 4-15, Figure 4-16 and Figure 4-17 it can be seen that the

tables fo

supporting documentation. Entity documentation is read into the database during the

cataloguing operation described in section 4.5.6. The original documentation can be

written in either individual text files (one per entity) or compiled in a single XML file.

59

4.7 Macro-component database
The previous sections described the individual tables in the database necessary to

model category and component attributes and characteristics. Figure 4-24 depicts how

all of these tables link together. The SQL script to create this table arrangement can be

found in appendix B.

Category modelling Component Modelling

component

PK component_id

component_name
FK1 category_id

available
last_modified

FK2 library_id

port

PK port_id

port_name
FK2 category_port_id

argument_index
direction
width_expression
inverted

FK1 component_id

parameter

PK parameter_id

parameter_name
value_type
signed
value_size
default_value
base
parameter_index

FK1 component_id

category

PK category_id

category_name

library

PK library_id

library_name
available
hld

cate ry_portgo category_pattern

PK category_port_id

port_type
port_direction
collection
optional
inverted

FK1 category_id

PK category_pattern_id

category_pattern_regexp
FK2 library_id
FK1 category_id

category_port_pattern

PK category_port_pattern_id

port_pattern_regexp
FK3 category_port_id
FK2 library_id
FK1 category_pattern_id

Figure 4-24
Component and category modelling database

wrapping each table were used.

4.9 Summary
This chapter described the structure of the server-side backend IP libraries being

delivered as a service through this EDA framework. The physical structure of the

underlying file system and the module linking mechanisms were described and

demonstrated using a particular FFT as an example. This example highlighted the

4.8 IP library EJB’s
Within the enterprise environment, each entity is modelled by an appropriate EJB.

Section 4.7 shows the structure of the information cached in a database for the IP

libraries. Each database table is an entity and thus bean managed persistence EJB’s

60

potential to rapidly modify the architecture of advanced digital systems and re-verify

ma presented a means of categorising and

in a tter of minutes. This chapter also

cataloguing IP metrics into a variety of persistence layers. Effective use of the façade

design pattern was demonstrated allowing part of the design environment to be used

in multiple configurations, client-server based and as a stand-alone tool.

61

Chapter 5
Client-side schematic capture tool

The previous chapter described the IP libraries to be deployed as a service within an

EDA platform. This chapter describes a one potential EDA environment that allows

end users to access these server-side IP libraries through a graphical user interface

(GUI). Considering the client-server architecture of the platform, there were two

possible means of developing the interface.

1. Web browser interface

The majority of distributed applications are developed around traditional web

browsers such as Microsoft’s Internet Explorer and Mozilla. The solution could be

based on standard HTML and dynamically generated graphics, web scripting

languages including JavaScript or perhaps as a MacroMedia Flash application.

Cadence, and what was their SpinCircuit EDA portal, was built around web

browsers. One of the drawbacks of browser-based solutions is their slow

responsiveness, especially if the network connection is slow. Additionally, in

applications such as this page timeout becomes an issue. Large digital systems

take considerable amounts of time to verify and synthesis, making controlling the

process via a browser quite difficult.

2. Executable application

The alternative is to build an executable application that makes us of the internet

as a communication protocol to the server. Such an application would need to be

installed on the end-user’s computer.

The client side environment described in this thesis is based upon an executable

application developed in Java. It should also be possible to use any other

programming language that supports the CORBA communication protocol, such as

C++ combined with a suitable widget set like GTK to act as the GUI. Having used

Java, portions of the server code can be directly integrated into the client by way of

62

the façade design pattern, meaning that it can also be operated

completely independent of the server.

5.1 Sche
The interfacing environ

schematic capture. There are many schematic capture packages for electronic design,

s available on the enterprise application

server. A screen-shot of this rudimentary GUI can be seen in Figure 5-1. As can be

well known schematic capture tools, but uniquely

mas

in a stand-alone mode,

matic capture environment
ment for the client-side EDA platform is based on traditional

both commercially and freely available. Typically these wrap around proprietary

libraries of IP building blocks and have static links to a predefined set of verification

and synthesis tools. The key differentiator of this solution is neither the IP libraries

nor back-end EDA tools are locally available. Instead the schematic capture

environment wraps around network service

seen, it resembles other

querades the underlying server in a transparent manner.

Figure 5-1
Screen shot of conventional FIR in the schematic capture environment

63

5.1.1 Accessing macro-components
Before a design can be created, the list of all available macro-components must be

macros on the server will be available

f menus on the left-hand

de of the application as seen in Figure 5-1. These menus are dynamically

constructed to match the hierarchal structure defined in the returned list. A close-up of

one of these menus expanded is shown in Figure 5-2.

made available to the client application. Not all

to every client. Using server-side constructs to be described in section 6.1, restrictions

can be imposed upon available modules based upon client user details. When

requested the server generates the list of available cores from its database and

transmits it to the client. The returned list contains the component ID and

corresponding library ID of every available macro-component. Additionally the list is

hierarchically structured and ordered into groups by category before being serialized

and returned by the server. This model ensures that the volume of data involved in the

transaction is minimised and ensures a fast start-up for the client which initiates this

request when it launches.

Within the client the list of macros is available as a series o

si

Figure 5-2
Menu of multipliers available to the client

64

The management system constructing the menus is built around the façade design

he J2EE server, SQL database or from

5.1.2.1 Response performance

Figure 5-3
Database queries for 4-input multiplexer

The response time of the component model acquisition is proportional to the number

of entities associated with the component model. In this case the entities are ports and

parameters. When constructing the component model the server component model

EJB needs to query the database about each individual port and parameter, a

potentially time consuming process. W nput multiplexer shown in Figure 5-3

e server must issue a t ent model metrics, one

r the parameter and six for the ports. The total client-server transaction time to

download the component model for the 4-input multiplexer took 0.3 seconds.

pattern, meaning that can be initialised from t

XML descriptions facilitating stand-alone operation of the application. Response

times of all three approaches are comparable.

5.1.2 Downloading ‘virtual’ macro-components
Selecting one of the components from the menu prepares the application to draw it on

the screen. The first stage of the process is to source the appropriate component model.

To ensure optimal performance, the environment operates a caching mechanism for

virtual components ensure that they are only downloaded once. If not in the cache, the

module and library ID’s of the requested component are sent to the server which

responds be returning the appropriate component model.

Component model metrics

Parameter: WIDTH

Input 1

Input 2

Input 3

Input 4
Address

Output

ith the 4-i

otal of 8 queries, one for the componth

fo

65

However the same test for a 512-input multiplexer took 1.2 seconds due to the 516

database queries, a noticeable response time while using the tool. Independent

research suggests that implementing an EJB caching architecture to reduce stress on

the database server could greatly improve response times [73] though.

ple the FIR filter of Figure

b more advanced architecture by simply replacing

5.1.3 Creating a design
Once a component model has been downloaded to the client, it can be represented on

the design area through a dynamically generated symbol. Component symbols can

then be interconnected by net symbols as can be seen in Figure 5-1 which shows a

conventional FIR filter.

The server-side libraries contain a number of components that allow different

configurations of the same design to be created. For exam

5-1 can e easily adapted to use a

some of the components in the schematic. This can be upgraded in a matter of minutes

to a block processing algorithm [74] by simply substituting the controller and

arithmetic unit (AU) components and adding an additional control net between them,

as shown in Figure 5-4. The end result will then be a functionally equivalent filter but

algorithmically optimised to consume less power. Being functionally equivalent, the

same testbench can be applied to both implementations.

66

Figure 5-4
FIR block processing algorithm

5.1.4 Parameterising components
One of the fundamental concepts of macro-components is that they are

parameterisable, as stated in section 1.3.2. As parameter information is encoded into

e component model, the characteristics of the virtual images of the component

odels can be readily adapted. Figure 5-5 shows the parameters associated with the

top level of an FIR filter and how they can be modified.

th

m

67

Figure 5-5
guring macro-component parameConfi ters

 concept of entity based documentation.

f g documentation for a parameter can be

ems are developed making

xtensive use of hierarchical modelling concepts [6, 67]. The two basic types of

design methodology are top-down and bottom-up. In each of these models the design

is recursively partitioned and fragmented into sub-blocks, each of specific

functionality. This environment allows designs to be partitioned into multiple

modules, each described by its own schematic. A design project can consist of several

user-design modules plugged together.

5.1.6 Simulation and verification
Once a design has been created, it should be functionally verified. Verification is the

process of ensuring that a design functions in a manner correct to its intended

application. The verification procedure begins by linking together the RTL source

Section 4.6.1 of this thesis introduced the

With re erence to Figure 5-5, any supportin

visualised via the description button, making the design process more intuitive and

accelerating development.

5.1.5 Hierarchial design
Good design methodology dictates that digital syst

e

68

code for all modules in the design. In the client-server environment the verification

stage must take place on the server. When a design is to undergo simulation, the

project information is serialised and streamed to the server where it is then extracted

into the user’s file space. After synchronization, which will be described in the next

chapter, the top-level Verilog RTL is generated using a stateless EJB. This is

performed in the server as opposed to the client for reasons of security and design

data integrity. This can be streamed back to the client if necessary as is shown in

Figure 5-6

Figure 5-6
Generated RTL Verilog from a schematic

Testbenches are the traditional means of performing functional verification. Written

in behavioural level Verilog, a testbench forms the (non-synthesisable) top level

module in the design. It then stimulates the design by applying input stimuli while

comparing the output against reference sets of data. Figure 5-7 shows how a testbench

a ensive guide to verification strategies and can be dded to the project. A compreh

testbenches can be found in the book Writing Testbenches [68].

69

Figure 5-7
Testbench for functional verification of a module

After synchronizing the client project with the server and building the necessary RTL

files the verification procedure can commence. The server will link together all

necessary RTL modules using the linker mechanism described in section 4.2 and then

invoke the appropriate verification tools in a process to be described in section 6.4.3.

Once the module has been verified on the server, the results will be streamed back to

the client and as shown in Figure 5-8.

70

Figure 5-8
Results returned from server-side RTL simulation

5.1.7 Simulation time
During simulation the enterprise application server spawns the verification tool as an

independent process on the host server. Hence it is fair to say that the time taken to

verify a design is directly comparable to that of traditional local host simulation times.

71

5.2 Drawing schematic symbols
Each macro-component is represented on the client application as a schematic symbol.

A symbol must be available for each type of component category that is to be

displayed. Symbols are defined using dedicated Java objects that implement the

java.awt.Shape interface. The shape interface defines a framework allowing

geometric shapes to be displayed and manipulated within a graphical environment.

5.2.1 Symbol geometry
Symbols have been designed with inherent dynamic geometric scaling, making it

easily possible to zoom in and out on the schematic. This has been achieved by

defining the geometry of each symbol as a multiple of X and Y grid co-ordinates.

Both X and Y scaling values can be independently specified, but this is generally

unnecessary and for convenience they have been locked together using the sliding

zoom facility at the bottom Figure 5-9

ows how the shape of the adder category has been defined. The variable ‘g’ is used

to represent the X-Y grid scaling.

 right-hand corner of the schematic screen.

sh

14g

2g

4g
7g

12g

8g

5g

Figure 5-9
Anatomy of an adder symbol

72

Certain category symbols have been defined in such a way to allow them to be

 and OR gate with an arbitrary number of inputs.

scalable in terms of number of inputs and/or outputs. Example of such component

categories are multiplexers, de-multiplexers and gates. Rather than create new

symbols for each component size, an additional variable is added to the geometry

definition. Figure 5-10 and Figure 5-11 demonstrate how this variable ‘i’ can be used

to draw an AND gate

g

2gI

Ig+g

g

2g

2g
Ig

2g

3.5gI
2g+3gI

3gI

gI

2g

1.5gI

3.5gI

2g+2.5gI

gI

Figure 5-10
Constructing an AND Gate symbol

Figure 5-11
Constructing an OR Gate symbol

5.2.2 Symbol to macro-component binding
To minimize the need to create huge libraries of symbols, each symbol has been

designed to cover a particular category range. Hence a means of mapping the

component models within a particular category to the corresponding symbol is needed.

Each symbol is designed taking into a information compiled in the category

model database. This means th the category and symbol must

atch. The symbol also accounts for optional ports and does not display them if they

are not present in the component model. Figure 5-12 shows the binding process for a

carry save adder to an adder symbol.

ccount the

at the port names of both

m

73

1-bit port

N-bit port

Active port area
com

Active
ponent

area

Component:
Type:
Module:
Name:
Ports:

Adder
Carry save adder
csa_16
adder_1
A,
B,
carry in,
Carry out,
sum

IconComponent

Figure 5-12
Binding a symbol to a macro-component

5.2.3 Symbol bounding regions
To allow the user to interact with the schematic, a set of bounding regions for each

dotted green outline of Figure 5-12. Firstly the symbol body is placed within a

rectangular bounding box. Mouse clicks detected within this bounding box are used to

highlight the com t. Smaller bounding boxes surround all of the ports. These

bounding boxes are used when the user attempts to connect a net to the port. On the

screen, 1-bit ports are one pixel wide, but it is impractical to expect the user to be

pixel perfect in clicking on the port. Hence the bounding box defines a region around

the p for a degree of

5.2.4 Nets
Component symbols are interconnected using nets. Like components, nets are

t se a NetSymbol object. Net

ust be able to create

new components, relocate these components, edit their characteristics, draw nets and

btain design information to name but a few. To simplify supporting all of these

symbol are defined. The bounding regions for an adder symbol are shown in the

ponen

ort, ±½ a grid spacing, allowing mouse control error.

schema ically represented using symbols, in this ca

symbols are a collection of line objects defining the path of the net. Nets support

branching abilities allowing fanout to be implemented.

5.2.5 Drawing controllers
The most complicated aspect of developing any schematic capture environment is that

of interpreting mouse events. The GUI environment supports a large number of

features, but these must all be accessible using nothing more than the two buttons

found on a typical mouse. Through these two buttons, the user m

o

74

features a range of application specific mouse controllers have been developed. The

first is a default controller that allows symbols to be moved and manipulated and their

properties edited. For the instantiation and placement of new components, a

component symbol controller extends the functionality of the default controller. A

final controller has been implemented for the manipulation of nets. Polymorphic

switching between these controllers occurs depending upon the user’s current

activities.

5.3 License mana
onsidering the client-server configuration of this project, a means of protecting the

er is necessary. As highlighted in section 1.2

rotection, a

software application can be installed and run from any compatible computer. Typical

ment practices will attempt to restrict the number of instances and

se management is controlling

especially true for alpha and beta releases, as issuing

products expire after a fixed time period.

gement
C

valuable intellectual property on the serv

of the introduction IP security is one of the key objectives of the research. Rather than

trusting the customers to obey the conditions of a written license agreement [75], a

simple but effective license management scheme was developed. This was considered

important for the reasons highlighted in the following paragraphs.

The first and most obvious reason is to ensure the product can only be operated by

those who have been granted the specific right. Software piracy is now a massive

industry which is very damaging to legitimate software authors and vendors [76].

Steps must be taken to ensure that software applications can only be distributed and

used within tightly controlled circumstances. Without any form of p

license manage

locations from which the application will run. A license server will usually be

installed with the application that will serve licenses to clients on the local network.

One of the most widely used license servers is FlexLM [77].

The second and potentially less obvious reason for licen

the lifetimes of products. This is

short term licenses will ensure that

Operation and support costs will be reduced if vendors know that there are no

customers using out of date software. When a customer’s license expires, a renewed

license can be granted providing they download the relevant patches, updates or latest

versions.

75

The client application developed here can be made compatible with commercial

license management solutions such as FlexLM, but this option was not available

during the project development. Hence a simple but relatively comprehensive

licensing procedure based on simple text files was investigated. An example of a

license file can be seen in Figure 5-13. When the client application is invoked, the

license file is read and the constraints within it interpreted. Failure to comply with any

of its directives will prevent the application from loading. To prevent this license file

from being copied and given to multiple users, the application server has been

gur a single instance of a named user.

ilar to a shell properties

confi ed to only grant a session to

Figure 5-13
Example license file

As can be seen in Figure 5-13 a license file has a format sim

###
Product license file

User_Name = rig
Password = ********
Host = 129.215.[0-9]+.[0-9]+
Products = tool_1@1.6:tool_2@[1-2]\.[0-9]+:
Start_Date = 07-04-2005 AD at 07:01:09 BST
Expiry_Date = 31-12-2005 AD at 23:59:59 GMT

Signature = 2A2566180AF1CE1EB40FBF93AC8AA330

#---#

file containing several property = value entries. The range of properties are

defined as follows:

• User Name

The client’s username as defined in the server-side database. Each subscriber

will have a unique username allowing them server login access.

76

• Password

Combined with the username, each client must also have a password allowing

them to log into the server. Defining the password in the license file is optional

as it could lead to potential security breaches. This is optional and if excluded it

will be prompted for as the application loads.

• Host

The host property defines the IP network addresses of the workstations that can

be used to access the server. The adopted IP addressing scheme is the V4 IP

protocol which has the form [byte.byte.byte.byte] with the classic example being

property, regular expressions can be used.

• Start Date

The start date specifies the time from when the license will active.

 specifies the time after which the product will no longer operate.

oding of parts of

e rest of the contents of the license. An MD5 hash of the resulting encoding is

 as the final signature and message authentication code minimizing the

chances of reverse engineering its encryption [78, 79].

127.0.0.1 – the IP address of localhost. The host value is actually a regular

expression of the host address matching pattern. It is therefore possible to match

any host address using the expression [0-9]+.[0-9]+.[0-9]+.[0-9]+.

• Products

The products property defines the range of products covered by the license.

Several products can then be covered by a single license. All products must be

listed here separated by the colon [:] character. A product value has two

constituent parts, a name and a version, these being separated by the @ character.

Figure 5-13 shows that 2 products are covered by the license, tool_1 and

tool_2. As can be seen tool_1 version 1.6 is supported. Like the hosts

• Expiry Date

The expiry date

• Signature

The signature is a hash code protecting the contents of the file from unauthorized

modification. This signature is derived using a highly lossey enc

th

then used

77

5.4 ary
This

to th

inter

of se stitched together, manipulated and

customized. Once a schematic representation of a design is complete, it can be

verified on the server. This methodology has the unique ability to allow designers to

cons

libra

serve

elem

indep

in w

Summ
 chapter presented an effective means of facilitating transparent end-user access

e server-side IP libraries protected using authentication mechanisms. The main

face was developed as a schematic capture package allowing virtual ghost images

rver-side macro-components to be graphically

truct low-power, high-performance digital designs using highly optimized

ries while protecting the intellectual property invested in those libraries. The

r-side RTL cannot be read nor copied without specific access being granted. GUI

ents for macro-components are based upon lightweight symbols which are

endent of the module that they form wrappers for, unlike heavyweight solutions

hich the symbols and RTL code are intertwined.

78

Chapter 6

rm, an account is nothing more

than a username and password. To log onto the system, a client user must provide a

valid username and password which should match an existing database entry. An

account can thus be expired by simply removing a particular client’s record from the

database. If no matching username is found, the client application will not load, even

if they have a valid license file.

+------------+--------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------------+------+-----+---------+-------+
User_Name	varchar(16) binary		PRI		
Password	varchar(16)				
File_Space	varchar(255)				
First_Name	varchar(20)				
Last_Name	varchar(20)				
Job_Title	varchar(50)	YES		NULL	
Email	varchar(50)	YES		NULL	
Public_Key	blob	YES		NULL	
Company_ID	int(11)		MUL	0	
+------------+--------------------+------+-----+---------+-------+

Figure 6-1
Client database table schema

Figure 6-1 shows the database schema for the table maintaining client profile

information. Each user can be uniquely identified by their username. A password field

is also provided for use in authentication. The ‘file space’ field defines the path to the

user’s home directory on the server. Due to the nature of this framework, simulating

and synthesizing designs requires the appropriate source files to physically exist on

Client-server integration

This chapter is intended to describe the interaction between the client and server and

the processes operating on the server to support the client.

6.1 Client profile record
Before a person can access the services provided by this framework they must be

registered on the server. Registration simply means having an account and

corresponding profile on the server. In its simplest fo

79

the server’s file system. Each time a new client project is crea

with that project will be stored on this location on the server.

The client table on its own is suf

However as noted in this thesis int

interest to SME’. Hence provision for company information is by way of the table

described in Figure 6-2. The client table supports a foreign key linking clients to their

| Field | Type | Null | Key | Default | Extra |
+--------------------+--------------------+------+-----+---------+----------------+
| Company_ID | int(11) | | PRI | NULL | auto_increment |
| Company_Name | varchar(50) | | | | |

A novel feature of this framework is the ability to restrict the libraries to which

dividual clients have access to. Figure 6-3 shows the schema for a table that defines

the relationsh tries in this

table enables respectively.

Changes here -components

described in se

+-------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+-----------------+------+-----+---------+----------------+
| Client_Library_ID | int(11) | | PRI | NULL | auto_increment |
| User_Name | char(16) binary | | MUL | | |

ted, all files associated

ficient for individual users to access the services.

roduction, such a framework may be of particular

associated company.

+--------------------+--------------------+------+-----+---------+----------------+

Company_Password	varchar(16) binary				
Department	varchar(100)	YES		NULL	
Street	varchar(100)	YES		NULL	
City	varchar(20)	YES		NULL	
State_County	varchar(20)	YES		NULL	
Country	varchar(20)	YES		NULL	
Zip_Post_Code	varchar(20)	YES		NULL	
Company_Email	varchar(30)	YES		NULL	
Company_Public_Key	blob	YES		NULL	
Company_Phone	varchar(25)	YES		NULL	
Company_Fax	varchar(25)	YES		NULL	
Company_Web	varchar(50)	YES		NULL	
+--------------------+--------------------+------+-----+---------+----------------+

Figure 6-2
Company database table schema

in

ips between clients and libraries. Adding or removing en

 or disables client’s visibility to individual libraries

 will define the contents of the list of available macro

ction 5.1.1.

| Library_ID | char(50) binary | | MUL | | |
+-------------------+-----------------+------+-----+---------+----------------+

Figure 6-3
Client-library database table schema

80

6.2 Client-server session
After authentication, using the license management described in section 5.3, a server

h can be many hours and simplifies timeout

issues

This im o the

platfor ss of

long sy o the

statefu wing

EJB cl . The

client y can

then later log back on and to their previous session to

onitor the progress of the verification and/or synthesis processes.

session is opened for a particular client instance. On the server side the session is

maintained using a stateful session EJB. Note that a stateful bean was chosen rather

than the more traditional route of using stateless beans of client sessions. This

decision was taken as a result of the lengthy periods of time required for verification

and synthesis of certain designs – whic

which can results in stale handles held by the client.

plementation should provide the framework for future enhancements t

m that will allow the server session to be maintained tracking the progre

nthesis and verification jobs. The client will be able to obtain a handle t

l session and store that on its local file system. Handles are a means of allo

ients to re-establish a connection to a previously accessed bean instance

will then be free to disconnect from the server, in essence, log-off. The

using the handle, reconnect

m

In its present state, the client must maintain an open connection to the server while

process jobs are running. Figure 6-4 provides a UML diagram of the client shell

session EJB supporting this functionality.

81

Figure 6-4
UML diagram of client shell session EJB

82

6.3 Project session
Each design in the client schematic capture tool is referred to as a project. In fact the

client is able to have several projects open simultaneously and the user can switch

back and forward between them. To do this, each client-side project must maintain a

handle to a server-side project session EJB for which a UML description can be seen

in Figure 6-5. This is actually an interface to real EJB object which is described in

Figure 6-6.

Figure 6-5
UML diagram of schematic project session EJB interface

83

Figure 6-6
UML diagram of schematic project bean EJB

84

6.3.1 Server project persistence
Each project belonging to a client is, in the eyes of the server, an actual entity. Hence

it is modelled using the entity EJB shown in Figure 6-6. Entity EJBs always have their

data written into a persistence layer when not active. Typically this will be a SQL

database or an XML file. However considering the nature of the data in this project,

the chosen persistence layer is a physical directory on the server’s file system. Section

6.1 stated that each client has a home directory on the server. All projects that a client

has will be stored as directories inside their home directory. Projects within the home

directory are identified using a unique ID code assigned to them when they are first

created.

While building their design, the full project description is held locally in a designated

directory on the client’s workstation. When the client user needs access to EDA

resources on the server, such as a verification tool, the locally held project description

will be synchronized with the server. This happens by serializing the project objects

and streaming them across the network/internet. Once on the server, project details are

written to the appropria L file. Any RTL files

that need to be dynamically generated are also written to this directory.

te server-side project directory as an XM

85

6.4 EDA tool-flow integration
One of the key features of this framework is that it allows client-side users to access

server-side verification and synthesis tools. A novel aspect is that verification and

synthesis can only be performed on the server – maintaining the security of the IP

cores used as the design building blocks. Figure 5-6 shows that it is possible for the

user to see the RTL code corresponding to their schematic design. It is even possible

for them to save this code to a file on their local network where it could be accessed

by their own EDA tool flows. Closer inspection of the RTL in Figure 5-6 reveals that

it instantiates many other component, which only exist in the server-side macro-

component libraries rendering the raw schematic translation RTL effectively useless

odule

and testbench can be compiled, a list of all dependency modules is constructed using

the processes defined in section 4.2. The appropriate verification tool is then invoked

using the techniques to be described in section 6.4.3 – Running native applications in

an enterprise environment. When the verification process is complete the results

generated are streamed back to the client where they can be displayed, see Figure 5-8.

6.4.2 Module synthesis
Once the user is satisfied that their design is complete and functionally accurate it can

be synthesized to a technology specific netlist representation. From the client’s

perspective, the synthesis process is very similar to that of verification. Again the

project is synchronized with the server and the appropriate files extracted into the

user’s server-side disk space. A synthesis script corresponding to the module is then

dynamically generated and written to the same directory. Appendix C shows an

example synthesis script for the BuildGates design flow. This script is then executed

and the resulting netlist returned to the user.

to the client user.

6.4.1 Verification
When the client sends a request for a module to be verified, the synchronization

process described in section 6.3.1 is first performed. The module to be verified is then

extracted from the project description, translated into Verilog RTL and written as a

file into the server project home directory. A similar process is then used to extract the

testbench, if one has been included, from the project description. Before the m

86

6.4.3 Running native applications in
To provide key services, the application

 an enterprise environment
 server must integrate itself with the EDA tool

locally available on the Java platform. To access functions via JNI,

ust be available in the form of a platform specific libraries – meaning dynamic

a Microsoft Windows or shared objects (SO) on Unix/Linux.

companies Cadence and Synopsys, the API information was unavailable.

pecifications [41], EJB’s are not allowed

flow environment. This integration must, as a minimum, allow it to launch native

applications such as verification and synthesis tools and feed back results to the client

user. Two ways of doing this are described in the following sub-sections.

6.4.3.1 Java Native Interface (JNI)
The preferred way of controlling native applications within a Java environment is

through the Java Native Interface (JNI). JNI is a framework specification and

corresponding API developed by Sun Microsystems [80]. Through JNI methods and

functions written in native languages such as C, C++ and assembly can be called as

though they were

they m

link libr ries (DLL) on

JNI has been successfully used in used in many automated applications [81] and

distributed processing environments [82], though this uses RMI as opposed to an

application server. Other works have attempted similar things, but using CORBA as

the communication protocol as opposed to RMI, allowing processes to be monitored

and controlled across the internet [83].

Although JNI is the optimal solution for controlling native processes, it was not

possible to be used in the framework at this time. To make use of JNI, the API

(meaning the function and method names, arguments and return types) of the native

libraries must be known. As the DLLs and SOs are proprietary to the vendor

6.4.3.2 Executing system commands
The alternative to JNI is to start and control the native application as a process from

the Java environment. Java provides a series of Runtime.exec(command)

methods which can be used to control native executables. As the native application

tools will be operated within the server environment, they are controlled using a

custom EJB stateless session bean. When a client requires access to an underlying

EDA product the EJB will need to invoke and control the appropriate tool. However

due to the restrictions imposed by the J2EE s

87

to manage threads. This is rather unfortunate as two threads are necessary to process

y, it will be

printing data to two independent streams known as the standard output and the

 e sent to the standard output stream while any

-rw-rw-rw- 1 rig None 1.4M Apr 17 21:10 existing.file

d and sent to the standard error stream. Note

the standard

output. The EJB can then operate within the J2EE specification as it is now

resented on a single stream. To allow the

to the data from the executable, one for the standard output stream and the other for

the standard error stream. When an application such as a Verilog compiler is running,

it is not uncommon for it to dump information detailing its current state and any

incurred errors to the terminal from which it was started. More correctl

standard error. All general data will b

error messages will be written to the standard error stream. The effects of this will be

noticed when attempting to redirect the output from a command to a file. The

following is an example of using the UNIX command ls, which list directory

contents.

linux % ls -lh existing.file non_existent.file
ls: non_existent.file: No such file or directory

The command ls –lh is attempting to list the attributes of both an existing and a

non-existing file. As the command succeeds for the existing file, the attributes of it are

written to the standard output stream. However the command failed or the nonexistent

file and an error message was generate

that the error message appeared first as the standard error has a higher priority than

standard out.

The solution implemented to circumvent this limitation is to create a separate

executable that controls the EDA tool, recording its output using two threads. The

contents of these two threads are then merged together and sent only to

guaranteed that all information will be p

session bean to distinguish between the standard messages and error messages, a

prefix is added to each line as shown below.

STD_ERR:>> ls: non_existent.file: No such file or directory
STD_OUT:>> -rw-rw-rw- 1 rig None 1.4M Apr 17 21:10 existing.file

88

Interpreting the prefix of each line allows the server to once again differentiate

between standard and error type messages. Standard data and error information can

then be provided to the client through two independent feeds allowing for better tool

interaction. For example all standard data, which may be a Verilog netlist, will appear

within the client editor. If an error message needs to be displayed, it is generally more

appropriate to do this using a pop-up dialog box.

6.4.4 Job farming
Deploying a system such as this within the EDA community would demand

considerable resources on the server. A single server machine would suffice for

running the enterprise application server, database server and user home directory file

rver. However simultaneously running verification and synthesis jobs will quickly

of job farming would be

 that several servers can

 an

 shows a UML representation of all the EJBs associated with

se

saturate the server. Hence for these tasks, some form

necessary. Most enterprise servers can be clustered, meaning

operate collectively as a single entity. However this would be uneconomical as

enterprise server would need to be installed on each workstation in the farm. Potential

solutions in the literature include JavaSplit [84, 85] which allows for the transparent

execution of multithreaded Java applications across a network of workstations.

6.5 Server-side EJBs
This section presents in diagrammatic form all of the server-side EJBs developed in

the project. Figure 6-7

maintaining and serving information regarding the macro-component libraries. Figure

6-8 depicts the EJBs maintaining the client metrics and project processing status.

89

Figure 6-7
UML diagram of the EJBs used IP library modelling

90

Figure 6-8
UML diagram of the client information and project interaction EJBs

91

6.6 Summary
This chapter described the major server-side services and how they have been made

available to the client application. This began by describing a user account and the

information necessary for a client session login. Following this was description of a

project session and server-side persistence of project data.

J2EE servers are typically designed to deliver services that run within the enterprise

environment. This particular application is different in that part of the service involves

EDA tools that are completely independent and not directly linkable to the enterprise

server without knowledge of their proprietary APIs. A solution has been developed

that allows threading restrictions in the J2EE specification to be overcome. However

this solution is not elegant and adds an extra layer and potential point of failure.

92

Chapter 7

obile

phone manufacturers are extending their feature lists (GPRS and Bluetooth to name

ut a few), reducing their size (greater use of SoC technologies) and enhancing

attery life (reducing power consumption). This requires access to both advanced

system-level building blocks and state-of-the-art EDA tools.

The aims of this thesis were to research and develop a potential solution tackling

some of the issues facing cost constrained digital system designers. This meant

investigating and realising a platform that can provide access to both IP and EDA

within a secure integrated environment. A suitable framework catering for this has

been described in the previous six chapters and has since been patented by The

University of Edinburgh.

This framework is built upon the J2EE standard giving rise to client-server based

architecture. The server hosts extensive libraries of intellectual property macro-

components and a suite of commercial EDA tools. These can be securely accessed by

a specifically developed client-side schematic capture application. Within the

schematic capture environment, users can construct digital systems using virtual

instances of the macro-components and remotely verify and synthesis them.

The first objective of this research was to provide remote access to a set of intellectual

property libraries. Through the developed architecture it is clearly possible to

manipulate server-side IP modules from within the remotely installed schematic

capture application. Intelligent database structuring also means that all server-side IP

modules are categorised making them easy to search and identify.

Conclusions and future work

Today’s microelectronics industry is evolving at an extraordinary pace as can clearly

be seen by the diversity of highly sophisticated, yet relatively cheap portable

consumer electronic devices available from high street retailers. To survive in such a

competitive market environment, vendors are compelled to rapidly diversify their

products to provide new benefits to attract potential customers. For example, m

b

b

93

The second objective was to protect the intellectual property invested in the m

component libraries. The architecture of this platform means th

the IP remains permanently on the server and completely inaccessib

schematic capture environ

even be performed with

eliminates some of the issues associated with other IP protection methods such as pre-

compilation, encryption and obfuscation. However at some point the client-side users

tool suites. This level of

services has been incorporated into the platform allowing comprehensive RTL

ntial design issues and correct them. Synthesis can be

approach

.

acro-

at the source code for

le to users of the

ment. Indeed full RTL level verification and synthesis can

out direct access to the RTL. This novel arrangement

of this platform will need to have access to the design in some form so that they can

proceed towards tape-out. A solution to this problem has not been addressed in this

thesis and could probably be investigated in a future study. One possible way to

proceed would be to allow the client to only download the netlist of their final design.

This should minimise the reverse-engineerability of the IP, especially for the complex

algorithmic level optimisations employed in the macro-components as described in

section 1.3.3.

The third objective was to facilitate access to remote EDA

verification and very rudimentary synthesis. The client development environment

provides the functionality to allow Verilog testbenches to be associated with each

design schematic. During the verification process the project data is serialized and

uploaded to the server and the appropriate tools invoked. The results produced by the

verification tool are then streamed back to the client and displayed. This should allow

the user to identify pote

performed in a similar manner but is currently feature limited. The process simply

involves dynamically generating and executing a generic synthesis script, an example

of which can be seen in appendix C. Future research projects based upon this platform

may wish to investigate means of adding more options for synthesis such as types of

optimisations. Both verification and synthesis are performed in this platform by

invoking server-side shell commands from an EJB. This is a less than ideal

and a method not directly supported by EJB containers due to threading issues.

However a solution has been developed and implemented that mitigates the threading

issues but still suffers from the unreliability associated with executing shell

commands. Future work may wish to investigate the Java Native Interface (JNI) as a

more suitable and stable means of controlling 3rd party applications

94

The fourth objective was to integrate the first three objectives into a single integrated

environment. This has been successfully achieved as the schematic capture

application can effectively be used without the designer realising that they are

working within a distributed environment. The client environment provides

transparent access to server-side resources giving the impression that the IP libraries

and EDA tools are locally available. This effectively abstracts away much of the

complexity of the platform architecture and provides an interface with which digital

design engineers will be immediately familiar.

The final objective was to ensure efficiency, scalability and reconfigurability of the

platform. Overall the platform operates in a highly efficient manner and its real time

speed is sufficient to compete with other commercial stand-alone products. Building

upon the J2EE standard ensures a high degree of scalability. If the platform is to be

deployed to a high volume of users the clustering facilities of the enterprise

application server can be exploited to ensure an acceptable level of performance. In

addition the developed architecture allows the IP libraries to easily expanded to

accommodate more cores covering a greater diversity of algorithms and end-use

applications. Undoubtedly the most processor intense aspect of this platform is from

the EDA products used for verification and synthesis. To ensure maximum scalability

future research may wish to investigate integrating an efficient job farming policy and

load balancing arrangement. This should mean that the responsiveness of the platform

is not compromised.

Reconfigurable aspects of the platform stem from extensive use of design patterns,

most notably the façade design pattern. Intelligent use of these patterns enables the

platform to be operated in one of several configurations. The main configuration is

client-server mode, but it is also possible to bypass the server and interact with the

database directly. This gives the same functionality but will not have the same degree

of scalability. Alternatively the schematic capture application can operated in a

conventional stand-alone mode writing its data into local XML files. The performance

difference between these configurations is negligible, with a slight latency associated

with remotely accessing the J2EE server or database server. The most noticeable

difference occurs during launch of the client application which has to execute

authentication procedures when accessing the J2EE server.

95

7.1 Future work
The conclusions mentioned above highlighted some key areas that could be explored

in future research projects. However this section will identify some additional work

that could be undertaken to further extend functionality.

One of the attempts of this research was to discover a means of facilitating efficient

design methodologies based on macro-components. This means that tradeoffs can be

made in designs by swapping sub-modules for alternatives of functional equivalency.

This was demonstrated in section 5.1.3 where the schematic for a conventional FIR

e means of integrating both client and server side IPs

filter was converted to a more power efficient block-processing scheme. Research

publications by the original authors of these filters prove that the principle of the

macro-components is valid. However users of this platform with no prior experience

of the macro-libraries will not know which modules should be embedded to optimise

towards their particular constraints. Future research should therefore be targeted

towards integrating a metrics database into the platform. This database should

catalogue key characteristics such as power, area and speed – both delay and latency.

If such a database is accessible to the schematic capture environment designers will

have a better understanding of the tradeoffs available enabling them to create more

efficient designs tailored towards their particular needs in a shorter period of time.

This platform is restricted to using modules available on the server-side IP libraries.

However it is quite likely that many designers will wish to incorporated their own

modules into the schematic. Som

into the platform would be a novel extension.

96

References

1. G. Moore, “Cramming more components onto integrated circuits” Electronics, vol.
38, no. 8, 1965. Available:

ftp://download.intel.com/research/silicon/moorespaper.pdf

2. Mentor Graphics. Available: http://www.mentor.com/

3. W. C. Rhines, “Moore's law is unconstitutional”, VLSI Design, 2005. 18th
International Conference on 3-7 Jan. 2005, pp 31 – 32.

4. Shekhar Borkar, “Obeying Moore's law beyond 0.18 micron”, ASIC/SOC
Conference, 2000. Proceedings. 13th Annual IEEE International
13-16 Sept. 2000, pp 26 – 31.

5. Pierre J. Bricaud, “IP reuse creation for system-on-a-chip design”, Custom
Integrated Circuits, 1999. Proceedings of the IEEE 1999, 16-19 May 1999
pp 395 – 401.

6. Michael Keating & Pierre Bricaud, “Reuse Methodology Manual for System-On-
Chip Designs – Second Edition”, Kluwer Academic Publishers © 1999.

7. Synposys Products and solutions, DesignWare® Intellectual Property. Available:
http://www.synopsys.com/products/designware/designware.html

8. David Besanko, David Dranove, Mark Shanley, “Economics of Strategy, Second,
Edition”, John Wiley & Sons © 2000, pp 109–135.

9. VSIA Alliance. Available: http://www.vsia.org

10. Christian S. Collberg & Clark Thomborson, “Watermarking, tamper-proofing,
and obfuscation - tools for software protection”, Software Engineering, IEEE
Transactions on Volume 28, Issue 8, Aug. 2002 pp 735 – 746.

1. Diomidis Spinellis, “Global analysis and transformations in preprocessed
languages”, Software Engineering, IEEE Transactions on Volume 29, Issue
11, Nov. 2003, pp 1019 – 1030.

12. Tom Mens and Tom Tourwe, “A survey of software refactoring”, Software
Engineering, IEEE Transactions on Volume 30, Issue 2, Feb 2004, pp 126 – 139.

13. Eric Zwyssig, “Low Power Digital Filter Design for Hearing Aid Applications”,
MSc thesis: The University of Edinburgh, 9 October 2000.

14. Synoysys White Paper, “Managing Power in Ultra Deep Submicron ASIC/IC
Design”, May 2002.

1

97

15. A.T. Erdogan, E. Z
Low Power FIR Fi

wyssig, T. Arslan, “Architectural Trade-offs in the Design of
ltering Cores”, IEE Proceedings - Circuits, Devices and

Systems, Vol. 151, No. 1, 5 Feb. 2004, pp. 10–17.

 FFT processor cores
gs - Circuits,

18.
. 127-

19. pson, J.S., “A novel low power pipelined
 and

3.

s
ecial

ty

n.

C
& Test of Computers, IEEE, Volume 18, Issue 4, July-Aug.

2001, pp 46 – 55.

16. T. Arslan and A. Erdogan, “Low power multiplication scheme for FIR filter
implementation on single multiplier CMOS DSP processor”; IEEE Electronics
Letters Vol. 32, No. 21 October 1996.

17. M. Hasan and T. Arslan, “Implementation of low power
using a novel order-based processing scheme”, IEE Proceedin
Devices and Systems, Vol. 150, No. 3, 6 June 2003, pp. 149–154.

C.H. Wang, A.T. Erdogan, and T. Arslan, “High Throughput and Low Power FIR
Filtering IP Cores”, IEEE International SOC Conference (SOCC 2004), pp
130, Santa Clara, California, September 12-15, 2004.

Paper Hasan, M., Arslan, T., Thom
architecture for a MC-CDMA receiver”, IEEE 3rd Int. Symposium on Image
Signal Processing and Analysis (ISPA 2003), Vol. 2, pp. 1048-1053, Rome,
18–20 Sep. 200

20. Aydin, N.; Arslan, T.; Cumming, D.R.S., “Direct sequence CDMA based wireles
interface for an integrated sensor microsystem”, 4th Int. IEEE EMBS Sp
Topic Conference on Information Technology Applications in Biomedicine,
Birmingham, UK, 24-26 April 2003, pp. 370–373 S.

21. S. Masupe, T. Arslan, “Low power order based DCT processing algorithm”, The
2001 IEEE Int. Symposium on Circuits and Systems (ISCAS'2001), Sydney,
Australia, 6-9 May 2001, Vol. 2, pp. 5–8.

22. K.C.B. Tan and T. Arslan, “An Embedded Extension Algorithm for the Lifting
based Discrete Wavelet Transform in JPEG2000”, 2002 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2002), 13-17
May 2002, Volume: 4, pp. 3513-3516.

23. Olivier Coudert, “Timing and design closure in physical design flows”, Quali
Electronic Design, 2002. Proceedings. International Symposium on 2002,
pp 511 – 516.

24. Vineet Sahula, C.P.Ravikumar, D.Nagchoudhuri, “Improvement of ASIC design
processes” Design Automation Conference, 2002. Proceedings of ASP-DAC 2002.
7th Asia and South Pacific and the 15th International Conference on VLSI Desig
Proceedings. 7-11 Jan. 2002, pp 105 – 110.

25. Lionel Bening & Harry Foster, “Optimizing multiple EDA tools within the ASI
design flow”, Design

98

26. Sumit DasGupta, “Looking back, looking around”, Design & Test of Computers,
IEEE, Volume 21, Issue 4, July-Aug. 2004, pp 271 – 273.

 Ahmed Hemani, “Charting the EDA roadmap”, Circ27. uits and Devices Magazine,

28. or
he University of Edinburgh,

29.

IEEE, Volume 20, Issue 6, Nov.-Dec. 2004, pp 5 – 10.

 Tughrul Arslan, Robert Graham, Robert Thomson, 2004, “System and Method f
Rapid Prototyping of ASIC Systems”, T
International patent number: WO2004068535, 2004-08-12.

 The Virtual Component Exchange. Available: http://www.thevcx.com/

30. Design and Reuse. Available: http://www.us.design-reuse.com/

31.
 International Conference

on 2002, pp 623 – 633.

32.
s”,

stems, Inc, International patent number: W0 01/65422 A2.

34. ”, State Patent Application:

35. r
 and ASP.NET thin-client

36. r
ineering Conference, 2004. 11th Asia-

37.
r, “A JAVA-based mixed-signal design environment”, Integrated

38.
 Computers, IEEE, Volume 20,

39.
me 17, Issue 3, May-June 1997, pp 44 – 53.

 Tushar K. Hazra, “Building enterprise portals: principles to practice”, Software
Engineering, 2002. ICSE 2002. Proceedings of the 24th

 William H. Robertson, James M. Plymale, 2000, “Method and system for
facilitating electronic circuit and chip design using remotely located resource
Cadence Design Sy

33. William H. Robertson, James M. Plymale, 2002, “Method and system for chip
design using remotely located resources”, Cadence Design Systems, Inc,
United State Patent Application: 20020188910, 2003-07-15.

 Don Brown, 2001, “Electronic product design system
20020156757.

 John Grundy, Zhong Wei, Radu Nicolescu & Yuhong Cai, “An environment fo
automated performance evaluation of J2EE
architectures”, Software Engineering Conference, 2004. Proceedings. 2004
pp 300 – 308.

 Yan Liu & Ian Gorton, “An Empirical Evaluation of Architectural Alternatives fo
J2EE and Web Services”, Software Eng
Pacific, 30-03 Nov. 2004, pp 10 – 17.

 Jochen Mades, Thomas Schneider, Manfred Glesner, Andre Windisch &
Wolfgang Ecke
Circuits and Systems Design, 2000. Proceedings. 13th Symposium on 18-24 Sept.
2000, pp 301 – 306.

 João M. P. Cardoso & Horácio Neto, “Compilation for FPGA-based
reconfigurable hardware”, Design & Test of
Issue 2, March-April 2003. pp 65 – 75.

 Ann Wollrath, Jim Waldo & Roger Riggs, “Java-centric distributed computing”,
IEEE Micro, Volu

99

40. Eric Altendorf, Moses Hohman & Roman Zabicki, “Using J2EE on a large, Web-
based project”, Software, IEEE, Volume: 19 Issue: 2 Mar/Apr 2002, pp 81 – 89.

41. Sun Microsystems, “Java™ 2 Platform Enterprise Edition Specification, v1.4”,
Available: http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

42. Richard Monson-Haefle, “Enterprise JavaBeans – 3rd Edition”, O’Reilly &
Associates © 2001.

 BEA Systems. Available: 43. http://www.bea.com

44. JBOSS. Available: http://www.jboss.org

45. Borland, JBuilder. Available: http://www.borland.co.uk/jbuilder

46. Borland, Borland Enterprise Server. Available: http://www.borland.co.uk/bes

 Jiang Guo, Yuehong Lia47. o & Behzad Parviz, “A survey of J2EE application
performance management systems”, Web Services, 2004. Proceedings. IEEE

48.
Associates ©2001

49.

International Conference on 6-9 July 2004, pp 724 – 731.

 Elliotte Rusty Harold & W. Scott Means, “XML in a Nutshell”, O’Reilly &

 Kevin E. Kline & Daniel Kline, “SQL in a Nutshell - Second Edition”, O’Reilly
& Associates ©2004

50. PostgreSQL. Available: http://www.postgres.org

 MySQL. Availa51. ble: http://www.mysql.com

52. MySQL, Connector/J: http://www.mysql.com/products/connector/j/

 George Reese, “Database Programming with JDBC and Java – Second
O’Reilly & Associates © 2000.

53. Edition”,

54. Huwei Guan, Ip, H.H.S. & Yanchun Zhang, “Java-based approaches for
accessing databases on the Internet and a JDBC-ODBC implementation”,
Computing & Control Engineering Journal Volume 9, Issue 2, April 1998
pp 71 – 78.

55. The Jakarta Project, The DBCP Component. Available:
http://jakarta.apache.org/commons/dbcp/

 Icarus Verilog. Avail56. able: http://www.icarus.com/eda/verilog/

,

002. IMTC/2002. Proceedings of the 19th
IEEE, Volume 2, 21-23 May 2002, pp 1543 – 1548.

57. Ana-Maria Cretu, Voicu Groza, Abdul Al-Dhaher & Rami Abielmona
“Performance evaluation of a software cluster”, Instrumentation and
Measurement Technology Conference, 2

100

http://www.thevcx.com/
http://www.us.design-reuse.com/

58. Erich Gamma, Richard Helm, Ralph Johnson & John Vissides “Design Patterns:
elements of reusable object-oriented software”, Addison-Wesley ©1995.

59. Lutz Prechelt, Barbra Unger, Walter F. Tichy, Peter Brössler & Lawrence G.
Votta, “A controlled experiment in maintenance: comparing design patterns to

001, pp 1134 – 1144.

ign patterns in garbage collection”
Technology of Object-Oriented Languages and Systems, 1997. TOOLS 25,

.

, Prentice Hall

jects

 pp 28 – 39.

action
mated Software Engineering, 2003. Proceedings. 18th IEEE

64. , row level locking, hot backup and foreign keys of MySQL,

simpler solutions”, Software Engineering, IEEE Transactions on Volume
27, Issue 12, Dec. 2

60. Stuart A. Yeates & Michel de Champlain, “Des

Proceedings, 24-28 Nov. 1997, pp 80 – 98

61. H.M.Deitel, P.J.Deitle & S.E.Santry, “Advanced Java 2 Platform”
©2002, Page 86.

62. Michael J. Mahemoff & Lorraine J. Johnston, “Handling multiple domain ob
with Model-View-Controller”, Technology of Object-Oriented Languages and
Systems, 1999. TOOLS 32. Proceedings 22-25 Nov. 1999,

63. Yuetang Deng, Phyllis Frankl & Zhongqiang Chen, “Testing database trans
concurrency”, Auto
International Conference on 6-10 Oct. 2003, pp 184 – 193.

 InnoDB – Transaction
Available: http://www.innodb.com

65. Jeffrey E. F. Friedl, “Mastering Regular Expr
2002

essions”, O'Reilly; 2 edition ©July

66. The Apache Jakarta Project, Jakarta ORO. Available:
http://jakarta.apache.org/oro/

Samir Palnitkar, “Verilog HDL – A Guide to Digital Design and Synthesis67. ”,

68. els”,
demic Publishers © 2000.

td 1364-2001.

70. March 2004. Available:
anuals/dwdg.pdf

SunSoft Press A Prentice Hall Title © 1996.

 Janick Bergeron, “Writing Testbenches Functional Verification of HDL Mod
Kluwer Aca

69. IEEE Standard Hardware Description Language, IEEE S

 Synopsys DesignWare Developers Guide,
http://www.synopsys.com/products/designware/docs/doc/dwf/m

g HDL
96,

71. Swapnajit Mittra, “VIP: a Verilog Interpreter for Preprocessing”, Verilo
Conference, 1996. Proceedings., 1996 IEEE International 26-28 Feb. 19
pp 34 – 38.

101

http://www.postgres.org/
http://www.icarus.com/eda/verilog/

72. Anthony Cox & Charles Clarke, “A comparative evaluation of techniques for
syntactic level source code analysis”, Software Engineering Conference, 2000.

.

73.

 on 19-22 May 2003, pp 244 – 251.

S
344.

 10, Oct. 1996, pp 114 – 115.

APSEC 2000. Proceedings. Seventh Asia-Pacific, 5-8 Dec. 2000, pp 282 – 289

 Avraham Leff & James T. Rayfield, “Improving application throughput with
enterprise JavaBeans Caching”, Distributed Computing Systems, 2003.
Proceedings. 23rd International Conference

74. Ahmet T. Erdogan and Tughrul Arslan, “Low Power Block-based FIR Filtering
Cores”, 2003 IEEE International Symposium on Circuits and Systems (ISCA
2003), MAY 25-28, 2003, vol. 5, pp. 341 –

75. Irah I. Donner, “Don't judge a software license by its cover”, Computer,
Volume 29, Issue

76. Moez Limayem, Mohamed Khalifa & Wynne W. Chin, “Factors motivating
software piracy: a longitudinal study”, Engineering Management, IEEE
Transactions on Volume 51, Issue 4, Nov. 2004, pp 414 – 425.

77. Macrovision, FLEXlm. Available:
http://www.macrovision.com/products/legacy_products/flexlm/index.shtml

 78. hen hashes collide

tication codes”, Information Theory, IEEE Transactions on

80. e Interface Specification”

Peter Gutmann, David Naccache and Charles C. Palmer, “W
[applied cryptography]”, Security & Privacy Magazine, IEEE, Volume 3, Issue
3, May-June 2005, pp: 68 – 71.

79. Bart Preneel and Paul C. van Oorschot, “On the security of iterated message
authen
Volume 45, Issue 1, Jan. 1999, pp:188 – 199.

 Sun Microsystems, “Java Nativ
Available: http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html

 Grzegorz Czajkowski, Laurent Daynès & Ma81. rio Wolczko, “Automated and

mposium on 27-30 Nov. 2001,
pp 298 – 307.

82. Masanobu Koga & Yuli Kikukawa, “Integration of platform-dependent simulators
. Proceedings

nference on Volume 2, 4-7 May 2003, pp 1351 – 1354.

84. Michael Factor, Assaf Schuster and Konstantin Shagin, “JavaSplit: a runtime for
execution of monolithic Java programs on heterogenous collections of commodity

portable native code isolation”, Software Reliability Engineering, 2001. ISSRE
2001. Proceedings. 12th International Sy

using distributed object and native language interface”, SICE 2002
of the 41st SICE Annual Conference Volume 1, 5-7 Aug. 2002, pp 374 – 379.

83. Lian Chen & Armin Eberlein, “A framework of a Web-based distributed control
system”, Electrical and Computer Engineering, 2003. IEEE CCECE 2003.
Canadian Co

102

workstations”, Cluster Computing, 2003. Proceedings. 2003 IEEE Internationa
Conference on 2003, pp: 110 – 117.

 Michael Factor, Assaf Schuster and Konstantin Shagin, “

l

85. r

A distributed runtime fo
Java: yesterday and today”, Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International 26-30 April 2004, pp:159.

103

Ap

 2 com/ipshells/AbstractIPShellAction.java

 3 com/ipshells/AbstractMain.java
 4 com/ipshells/DatabaseConnection.java

 5 com/ipshells/EditorPanel.java
 6 com/ipshells/ExecMain.java
 7 com/ipshells/Library/AbstractVerifySynthesize.java
 8 com/ipshells/Library/Categories/CategoriesTestClient.java
 9 com/ipshells/Library/Categories/Category.java
 10 com/ipshells/Library/Categories/CategoryBean.java
 11 com/ipshells/Library/Categories/CategoryComponents.java
 12 com/ipshells/Library/Categories/CategoryException.java
 13 com/ipshells/Library/Categories/CategoryGroup.java
 14 com/ipshells/Library/Categories/CategoryHome.java
 15 com/ipshells/Library/Categories/CategoryList.java
 16 com/ipshells/Library/Categories/CategoryManagerMain.java
 17 com/ipshells/Library/Categories/CategoryModel.java
 18 com/ipshells/Library/Categories/CategoryModelDB.java
 19 com/ipshells/Library/Categories/CategoryModelEJB.java
 20 com/ipshells/Library/Categories/CategoryModelPanel.java
 21 com/ipshells/Library/Categories/CategoryModelPersistence.java
 22 com/ipshells/Library/Categories/CategoryModelXML.java
 23 com/ipshells/Library/Categories/CategoryPatternsModel.java
 24 com/ipshells/Library/Categories/CategoryPersistenceManager.java
 25 com/ipshells/Library/Categories/CategoryPortModel.java
 26 com/ipshells/Library/Categories/CategoryPortModelPanel.java
 27 com/ipshells/Library/Categories/CategoryPortPatternsModel.java
 28 com/ipshells/Library/Categories/CategoryRemote.java
 29 com/ipshells/Library/Categories/CategoryRemoteHome.java
 30 com/ipshells/Library/Categories/CategoryTreePanel.java
 31 com/ipshells/Library/ComponentID.java
 32 com/ipshells/Library/ComponentStatistics.java
 33 com/ipshells/Library/ComponentUpdatePanel.java
 34 com/ipshells/Library/ExclusionPatterns.java
 35 com/ipshells/Library/HDL/ComponentDocumentationModel.java
 36 com/ipshells/Library/HDL/ComponentModel.java
 37 com/ipshells/Library/HDL/ComponentModelXML.java
 38 com/ipshells/Library/HDL/ComponentTest.java
 39 com/ipshells/Library/HDL/DatabaseComponentReader.java
 40 com/ipshells/Library/HDL/DatabaseComponentWriter.java
 41 com/ipshells/Library/HDL/HDLParsingException.java
 42 com/ipshells/Library/HDL/HDLSourceReader.java
 43 com/ipshells/Library/HDL/Parameter.java
 44 com/ipshells/Library/HDL/ParameterExpression.java
 45 com/ipshells/Library/HDL/ParameterModel.java
 46 com/ipshells/Library/HDL/Port.java
 47 com/ipshells/Library/HDL/PortModel.java
 48 com/ipshells/Library/HDL/PortParameterContainer.java
 49 com/ipshells/Library/HDL/Verilog/Generators/AbstractHDLGenerator.java
 50 com/ipshells/Library/HDL/Verilog/Generators/AbstractVerilogGenerator.java
 51 com/ipshells/Library/HDL/Verilog/Generators/Definition.java
 52 com/ipshells/Library/HDL/Verilog/Generators/DemuxGenerator.java
 53 com/ipshells/Library/HDL/Verilog/Generators/GUI/EditorPanel.java
 54 com/ipshells/Library/HDL/Verilog/Generators/GUI/FileMenu.java
 55 com/ipshells/Library/HDL/Verilog/Generators/GUI/GeneratorActions.java
 56 com/ipshells/Library/HDL/Verilog/Generators/GUI/GeneratorFrame.java
 57 com/ipshells/Library/HDL/Verilog/Generators/GUI/HDLGeneratorMain.java
 58 com/ipshells/Library/HDL/Verilog/Generators/GUI/HelpMenu.java
 59 com/ipshells/Library/HDL/Verilog/Generators/GUI/MainMenuBar.java
 60 com/ipshells/Library/HDL/Verilog/Generators/GUI/ModuleConfigPanel.java
 61 com/ipshells/Library/HDL/Verilog/Generators/GUI/ModuleControlPanel.java
 62 com/ipshells/Library/HDL/Verilog/Generators/GUI/SubModulePanel.java
 63 com/ipshells/Library/HDL/Verilog/Generators/GUI/VariablesPanel.java
 64 com/ipshells/Library/HDL/Verilog/Generators/GeneratorSkeleton.java
 65 com/ipshells/Library/HDL/Verilog/Generators/HDLGenerator.java
 66 com/ipshells/Library/HDL/Verilog/Generators/ModuleVariablesModel.java
 67 com/ipshells/Library/HDL/Verilog/Generators/MuxGenerator.java
 68 com/ipshells/Library/HDL/Verilog/Generators/Parameter.java

pendix A
Java source files

 1 com/ipshells/AbstractGUIMain.java

104

 69 com/ipshells/Lib
 70 com/ipshells/Lib
 71 com/ipshells/Library/HDL/
 72 com/ipshells/Library/HDL/
 73 com/ipshells/Library/HDL/
 74 com/ipshells/Library/HDL/
 75 com/ipshells/Library/HDL/Verilog/VerilogInteger.java

rary/HDL/Verilog/Generators/RAMCorrelatorGenerator.java
rary/HDL/Verilog/Generators/RAMEnableGenerator.java

Verilog/Generators/RAMGenerator.java
Verilog/Generators/ShiftLeftGenerator.java
Verilog/Generators/SubModule.java
Verilog/Generators/Variable.java

 76 com/ipshells/Library/HDL/Verilog/VerilogObjectNameTextField.java
rilogParsingException.java

ourceReader.java
yntax.java

tternPanel.java
og.java

figPanel.java

va

ML.java
sPanel.java

actCircuitComponent.java
actCircuitIO.java

cuitObject.java

a
ticUnit.java

.java
Input.java
Output.java

mbiner.java
ts/Compressor.java

va

tion.java

va
java

 77 com/ipshells/Library/HDL/Verilog/Ve
 78 com/ipshells/Library/HDL/Verilog/VerilogS

g/VerilogS 79 com/ipshells/Library/HDL/Verilo
 80 com/ipshells/Library/LibraryCategoryPa

nfigDial 81 com/ipshells/Library/LibraryCo
yCon 82 com/ipshells/Library/Librar

 83 com/ipshells/Library/LibraryException.java
 84 com/ipshells/Library/LibraryFileManager.java
 85 com/ipshells/Library/LibraryManager.java
 86 com/ipshells/Library/LibraryManagerMain.java
 87 com/ipshells/Library/LibraryManagerPanel.java
 88 com/ipshells/Library/LibraryModel.java
 89 com/ipshells/Library/LibraryModelPersistence.java
 90 com/ipshells/Library/LibraryPathResolver.java
 91 com/ipshells/Library/ModuleContainerDependencies.ja
 92 com/ipshells/Library/ModuleDependencies.java
 93 com/ipshells/Library/ModuleDependenciesMain.java
 94 com/ipshells/Library/VerificationException.java
 95 com/ipshells/Library/Verify.java
 96 com/ipshells/Library/VerifyMain.java
 97 com/ipshells/Library/Verify_Icarus.java
 98 com/ipshells/License.java
 99 com/ipshells/LicenseSignature.java
 100 com/ipshells/LicenseWriter.java
 101 com/ipshells/Math/BinaryOperators.java
 102 com/ipshells/Math/PostfixCalculator.java
 103 com/ipshells/Math/PostfixCompiler.java
 104 com/ipshells/Math/PostfixObjectCompiler.java
 105 com/ipshells/Math/UnaryOperators.java
 106 com/ipshells/MemoryStatsPanel.java
 107 com/ipshells/PersistenceModel.java
 108 com/ipshells/ProcessExecMain.java
 109 com/ipshells/SchematicProject/AbstractSchematicX

rtie 110 com/ipshells/SchematicProject/ComponentPrope
 111 com/ipshells/SchematicProject/ModuleCanvas.java

.java 112 com/ipshells/SchematicProject/ModuleException
 113 com/ipshells/SchematicProject/ModuleObjects/Abstr

Abstr 114 com/ipshells/SchematicProject/ModuleObjects/
 115 com/ipshells/SchematicProject/ModuleObjects/AbstractCir
 116 com/ipshells/SchematicProject/ModuleObjects/Adder.java

e.jav 117 com/ipshells/SchematicProject/ModuleObjects/AndGat
ithme 118 com/ipshells/SchematicProject/ModuleObjects/Ar

cts/Bus 119 com/ipshells/SchematicProject/ModuleObje
 120 com/ipshells/SchematicProject/ModuleObjects/Circuit

ircuit 121 com/ipshells/SchematicProject/ModuleObjects/C
eObjects/Co 122 com/ipshells/SchematicProject/Modul

 123 com/ipshells/SchematicProject/ModuleObjec
 124 com/ipshells/SchematicProject/ModuleObjects/Counter.ja
 125 com/ipshells/SchematicProject/ModuleObjects/Demultiplexer.java
 126 com/ipshells/SchematicProject/ModuleObjects/Divider.java
 127 com/ipshells/SchematicProject/ModuleObjects/FFT.java
 128 com/ipshells/SchematicProject/ModuleObjects/FIRController.java
 129 com/ipshells/SchematicProject/ModuleObjects/Filter.java
 130 com/ipshells/SchematicProject/ModuleObjects/FlipFlop.java
 131 com/ipshells/SchematicProject/ModuleObjects/IncompatibleConnectionExcep
 132 com/ipshells/SchematicProject/ModuleObjects/InputPort.java
 133 com/ipshells/SchematicProject/ModuleObjects/InstantiateComponent.java
 134 com/ipshells/SchematicProject/ModuleObjects/Inverter.java
 135 com/ipshells/SchematicProject/ModuleObjects/Latch.java
 136 com/ipshells/SchematicProject/ModuleObjects/MAC.java
 137 com/ipshells/SchematicProject/ModuleObjects/ModuleContainer.java
 138 com/ipshells/SchematicProject/ModuleObjects/ModuleParameter.java
 139 com/ipshells/SchematicProject/ModuleObjects/ModulePort.java

ja 140 com/ipshells/SchematicProject/ModuleObjects/ModuleVerilogGenerator.
ption. 141 com/ipshells/SchematicProject/ModuleObjects/MultipleDriverExce

 142 com/ipshells/SchematicProject/ModuleObjects/Multiplexer.java
 143 com/ipshells/SchematicProject/ModuleObjects/Multiplier.java

105

 144 com/ipshells/SchematicProject/ModuleObjects/NandGate.java
 145 com/ipshells/SchematicProject/ModuleObjects/NorGate.java

 146 com/ipshells/SchematicProject/ModuleObjects/OrGate.java
 147 com/ipshells/SchematicProject/ModuleObjects/OutputPort.java
 148 com/ipshells/SchematicProject/ModuleObjects/RAM.java
 149 com/ipshells/SchematicProject/ModuleObjects/ROM.java
 150 com/ipshells/SchematicProject/ModuleObjects/Receiver.java
 151 com/ipshells/SchematicProject/ModuleObjects/Shifter.java

.jav 152 com/ipshells/SchematicProject/ModuleObjects/Subtractor a
entSymbol.java

bol.java
mbol.java

dGateSymbol.java
thmeticUnitSymbol.java

bols/BusSymbol.java
mbols/BusSymbolLine.java

ymbols/CircuitInputSymbol.java
mbols/CircuitObjectSymbol.java

ymbols/CircuitOutputSymbol.java
mbols/CombinerSymbol.java
bols/ComponentSymbol.java

mbols/CompressorSymbol.java
/DeMultiplexerSymbol.java

s/FFTSymbol.java
ControllerSymbol.java

RSymbol.java
s/FlipFlopSymbol.java

ls/InstantiateComponentSymbol.java
bjects/Symbols/InverterSymbol.java

cts/Symbols/LatchSymbol.java
ts/Symbols/ModuleSymbols.java

cts/Symbols/MultiplexerSymbol.java
Objects/Symbols/MultiplierSymbol.java

ects/Symbols/NandGateSymbol.java
ts/Symbols/NorGateSymbol.java
s/Symbols/OrGateSymbol.java

ymbols/PortSymbol.java
mbols/RAMSymbol.java

ymbols/ROMSymbol.java
jects/Symbols/ReceiverSymbol.java

Objects/Symbols/SubtractorSymbol.java
eObjects/Symbols/SymbolException.java

Symbol.java
mbol.java

va

er.java

Menu.java
u.java

lector.java
electorToolBar.java

 153 com/ipshells/SchematicProject/ModuleObjects/Symbols/AbstractCompon
 154 com/ipshells/SchematicProject/ModuleObjects/Symbols/AbstractSym
 155 com/ipshells/SchematicProject/ModuleObjects/Symbols/AdderSy
 156 com/ipshells/SchematicProject/ModuleObjects/Symbols/An
 157 com/ipshells/SchematicProject/ModuleObjects/Symbols/Ari
 158 com/ipshells/SchematicProject/ModuleObjects/Sym
 159 com/ipshells/SchematicProject/ModuleObjects/Sy
 160 com/ipshells/SchematicProject/ModuleObjects/S
 161 com/ipshells/SchematicProject/ModuleObjects/Sy
 162 com/ipshells/SchematicProject/ModuleObjects/S
 163 com/ipshells/SchematicProject/ModuleObjects/Sy
 164 com/ipshells/SchematicProject/ModuleObjects/Sym

cts/Sy 165 com/ipshells/SchematicProject/ModuleObje
 166 com/ipshells/SchematicProject/ModuleObjects/Symbols

bol 167 com/ipshells/SchematicProject/ModuleObjects/Sym
 168 com/ipshells/SchematicProject/ModuleObjects/Symbols/FIR

mbols/FI 169 com/ipshells/SchematicProject/ModuleObjects/Sy
 170 com/ipshells/SchematicProject/ModuleObjects/Symbol
 171 com/ipshells/SchematicProject/ModuleObjects/Symbo
 172 com/ipshells/SchematicProject/ModuleO
 173 com/ipshells/SchematicProject/ModuleObje
 174 com/ipshells/SchematicProject/ModuleObjec

eObje 175 com/ipshells/SchematicProject/Modul
 176 com/ipshells/SchematicProject/Module
 177 com/ipshells/SchematicProject/ModuleObj
 178 com/ipshells/SchematicProject/ModuleObjec
 179 com/ipshells/SchematicProject/ModuleObject
 180 com/ipshells/SchematicProject/ModuleObjects/S
 181 com/ipshells/SchematicProject/ModuleObjects/Sy

ects/S 182 com/ipshells/SchematicProject/ModuleObj
Ob 183 com/ipshells/SchematicProject/Module

 184 com/ipshells/SchematicProject/Module
 185 com/ipshells/SchematicProject/Modul
 186 com/ipshells/SchematicProject/ModuleObjects/Symbols/XnorGate
 187 com/ipshells/SchematicProject/ModuleObjects/Symbols/XorGateSy
 188 com/ipshells/SchematicProject/ModuleObjects/Wire.ja
 189 com/ipshells/SchematicProject/ModuleObjects/XnorGate.java
 190 com/ipshells/SchematicProject/ModuleObjects/XorGate.java
 191 com/ipshells/SchematicProject/ModulePanel.java
 192 com/ipshells/SchematicProject/ModulePropertiesPanel.java
 193 com/ipshells/SchematicProject/ModuleXML.java
 194 com/ipshells/SchematicProject/NewProjectPanel.java
 195 com/ipshells/SchematicProject/ParameterPropertiesPanel.java
 196 com/ipshells/SchematicProject/Project.java
 197 com/ipshells/SchematicProject/ProjectActions.java
 198 com/ipshells/SchematicProject/ProjectException.java
 199 com/ipshells/SchematicProject/ProjectID.java
 200 com/ipshells/SchematicProject/ProjectID_XML.java
 201 com/ipshells/SchematicProject/ProjectManager.java
 202 com/ipshells/SchematicProject/ProjectPanel.java
 203 com/ipshells/SchematicProject/ProjectReadWrite.java
 204 com/ipshells/SchematicProject/ProjectXML.java
 205 com/ipshells/SchematicProject/ServerModule.java
 206 com/ipshells/SchematicProject/ServerModuleXML.java
 207 com/ipshells/SchematicProject/ServerProject.java
 208 com/ipshells/SchematicProject/ServerProjectXML.java
 209 com/ipshells/SchematicProject/SymbolPropertiesTabbedPane.java
 210 com/ipshells/SchematicProject/TestBench.java
 211 com/ipshells/SchematicProject/TestBenchPanel.java
 212 com/ipshells/SchematicProject/VerificationPanel.java
 213 com/ipshells/SchematicProject/VerifyRTLPanel.java
 214 com/ipshells/ServerConnection.java
 215 com/ipshells/ShellClient/ComponentSelection/AbstractSymbolControll

 216 com/ipshells/ShellClient/ComponentSelection/BusPopupMenu.java
 217 com/ipshells/ShellClient/ComponentSelection/BusSymbolController.java
 218 com/ipshells/ShellClient/ComponentSelection/CategoryComponentsMenu.java
 219 com/ipshells/ShellClient/ComponentSelection/CategoryGroupPopup
 220 com/ipshells/ShellClient/ComponentSelection/CircuitIOPopupMen
 221 com/ipshells/ShellClient/ComponentSelection/CircuitObjectSe

106

 222 com/ipshells/ShellClient/ComponentSelection/CircuitObjectS

 223 com/ipshells/ShellClient/ComponentSelection/ComponentSymbolC
 224 com/ipshells/ShellClient/ComponentSelection/DefaultSymbolCont

roller

ontroller.java
roller.java

Manager.java

rator.java
eratorBean.java

ourceGeneratorHome.java
urceGeneratorLocal.java

ourceGeneratorLocalHome.java
LSourceGeneratorTestClient1.java

ean.java
.java
e.java
eHome.java

 225 com/ipshells/ShellClient/ComponentSelection/SymbolCont
 226 com/ipshells/ShellClient/DragAndDropHandler.java
 227 com/ipshells/ShellClient/EditMenu.java
 228 com/ipshells/ShellClient/EnvironmentActions.java
 229 com/ipshells/ShellClient/FileMenu.java
 230 com/ipshells/ShellClient/HelpMenu.java
 231 com/ipshells/ShellClient/MainMenuBar.java
 232 com/ipshells/ShellClient/MainToolbar.java
 233 com/ipshells/ShellClient/ProjectMenu.java
 234 com/ipshells/ShellClient/SessionManager.java
 235 com/ipshells/ShellClient/ShellClientAbout.java
 236 com/ipshells/ShellClient/ShellClientFrame.java
 237 com/ipshells/ShellClient/ShellClientMain.java
 238 com/ipshells/ShellClient/ViewMenu.java
 239 com/ipshells/ShellClient/WindowMenu.java
 240 com/ipshells/XML/Schematic.java
 241 com/ipshells/XML/SchematicReader.java
 242 com/ipshells/XML/SchematicScript.java
 243 com/ipshells/XML/WriteSchematic.java
 244 com/ipshells/ejb/AbstractIPShellsEJB.java
 245 com/ipshells/ejb/Client/Client.java
 246 com/ipshells/ejb/Client/ClientBean.java
 247 com/ipshells/ejb/Client/ClientHome.java
 248 com/ipshells/ejb/Client/ClientLibrary.java
 249 com/ipshells/ejb/Client/ClientLibraryBean.java
 250 com/ipshells/ejb/Client/ClientLibraryHome.java
 251 com/ipshells/ejb/Client/ClientLibraryRemote.java
 252 com/ipshells/ejb/Client/ClientLibraryRemoteHome.java
 253 com/ipshells/ejb/Client/ClientRemote.java
 254 com/ipshells/ejb/Client/ClientRemoteHome.java
 255 com/ipshells/ejb/Client/ClientShellSession.java
 256 com/ipshells/ejb/Client/ClientShellSessionBean.java
 257 com/ipshells/ejb/Client/ClientShellSessionHome.java
 258 com/ipshells/ejb/Client/SchematicProject.java
 259 com/ipshells/ejb/Client/SchematicProjectBean.java
 260 com/ipshells/ejb/Client/SchematicProjectHome.java
 261 com/ipshells/ejb/Client/SchematicProjectRemote.java
 262 com/ipshells/ejb/Client/SchematicProjectRemoteHome.java
 263 com/ipshells/ejb/Client/SchematicProjectSession.java
 264 com/ipshells/ejb/Client/SchematicProjectSessionBean.java
 265 com/ipshells/ejb/Client/SchematicProjectSessionHome.java
 266 com/ipshells/ejb/DBStatistics.java
 267 com/ipshells/ejb/Library/HDL/Component.java
 268 com/ipshells/ejb/Library/HDL/ComponentBean.java
 269 com/ipshells/ejb/Library/HDL/ComponentHome.java
 270 com/ipshells/ejb/Library/HDL/ComponentRemote.java
 271 com/ipshells/ejb/Library/HDL/ComponentRemoteHome.java
 272 com/ipshells/ejb/Library/HDL/Verilog/Generators/HDLSourceGene

LSourceGen 273 com/ipshells/ejb/Library/HDL/Verilog/Generators/HD
 274 com/ipshells/ejb/Library/HDL/Verilog/Generators/HDLS
 275 com/ipshells/ejb/Library/HDL/Verilog/Generators/HDLSo

s/HDLS 276 com/ipshells/ejb/Library/HDL/Verilog/Generator
 277 com/ipshells/ejb/Library/HDL/Verilog/Generators/HD
 278 com/ipshells/ejb/Library/Library.java
 279 com/ipshells/ejb/Library/LibraryBean.java
 280 com/ipshells/ejb/Library/LibraryCategoryPattern.java
 281 com/ipshells/ejb/Library/LibraryCategoryPatternB
 282 com/ipshells/ejb/Library/LibraryCategoryPatternHome
 283 com/ipshells/ejb/Library/LibraryCategoryPatternRemot
 284 com/ipshells/ejb/Library/LibraryCategoryPatternRemot
 285 com/ipshells/ejb/Library/LibraryHome.java
 286 com/ipshells/ejb/Library/LibraryRemote.java
 287 com/ipshells/ejb/Library/LibraryRemoteHome.java
 288 com/ipshells/ejb/Library/LibrarySession.java
 289 com/ipshells/ejb/Library/LibrarySessionBean.java
 290 com/ipshells/ejb/Library/LibrarySessionHome.java
 291 com/ipshells/ejb/io/Process.java
 292 com/ipshells/ejb/io/ProcessBean.java
 293 com/ipshells/ejb/io/ProcessHome.java
 294 com/ipshells/hdl/AbstractHDLSyntax.java
 295 com/ipshells/hdl/HDLException.java
 296 com/ipshells/hdl/HDLObjectNameTextField.java
 297 com/ipshells/hdl/HDLParsingException.java
 298 com/ipshells/hdl/HDLSourceReader.java

107

 299 com/ipshells/hdl/verilog/VerilogSyntax.java

 300 com/ipshells/hdl/vhdl/VHDLSyntax.java
 301 com/ipshells/library/AbstractLibraryModelCache.java
 302 com/ipshells/library/LibraryComponents.java
 303 com/ipshells/library/LibraryConfigDialog.java

va 304 com/ipshells/library/LibraryException.ja
 305 com/ipshells/library/LibraryManager.java

nPanel.ja 306 com/ipshells/library/LibraryManagerButto va
java

java

ategoryPatterns.java
on.java

r.java
nagerMain.java

odel.java
yModelDB.java
yModelEJB.java

ryModelPanel.java
elPersistence.java

delXML.java
atternException.java

ternTreePanel.java
sModel.java
l.java
Panel.java

odel.java

va
l.java

rns.java
nsXML.java

ava

odel.java

 307 com/ipshells/library/LibraryManagerMain.
 308 com/ipshells/library/LibraryModel.java
 309 com/ipshells/library/LibraryModelPanel.java
 310 com/ipshells/library/LibraryModelPersistence.
 311 com/ipshells/library/LibraryModelXML.java
 312 com/ipshells/library/LibraryTable.java
 313 com/ipshells/library/categories/AbstractLibraryC
 314 com/ipshells/library/categories/CategoryExcepti

anage 315 com/ipshells/library/categories/CategoryM
 316 com/ipshells/library/categories/CategoryMa

ryM 317 com/ipshells/library/categories/Catego
 318 com/ipshells/library/categories/Categor
 319 com/ipshells/library/categories/Categor
 320 com/ipshells/library/categories/Catego
 321 com/ipshells/library/categories/CategoryMod

oryMo 322 com/ipshells/library/categories/Categ
 323 com/ipshells/library/categories/CategoryP
 324 com/ipshells/library/categories/CategoryPat
 325 com/ipshells/library/categories/CategoryPattern
 326 com/ipshells/library/categories/CategoryPortMode
 327 com/ipshells/library/categories/CategoryPortModel
 328 com/ipshells/library/categories/CategoryPortPatternsM
 329 com/ipshells/library/categories/CategoryRemote.java

Home.ja 330 com/ipshells/library/categories/CategoryRemote
 331 com/ipshells/library/categories/CategoryTreePane
 332 com/ipshells/library/categories/LibraryCategoryPatte
 333 com/ipshells/library/categories/LibraryCategoryPatter
 334 com/ipshells/library/components/Component.java

ion.j 335 com/ipshells/library/components/ComponentExcept
 336 com/ipshells/library/components/ComponentID.java
 337 com/ipshells/library/components/ComponentInterfaceM
 338 com/ipshells/library/components/Parameter.java
 339 com/ipshells/library/components/Port.java
 340 com/ipshells/swing/NumberTextField.java

108

Appendix B:
MySQL database creation script

NT,

OP TABLE IF EXISTS Category_Patterns;
EATE TABLE IF NOT EXISTS Category_Patterns(
 Category_Pattern_ID INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 Category_Pattern_Regexp CHAR(250) NOT NULL,
 Library_ID CHAR(50) BINARY NOT NULL,
 INDEX library_index (Library_ID),
 FOREIGN KEY (Library_ID) REFERENCES Libraries(Library_ID)
 ON DELETE CASCADE,
 Category_ID INT NOT NULL,
 INDEX category_index (Category_ID),
 FOREIGN KEY (Category_ID) REFERENCES Categories(Category_ID)
 ON DELETE CASCADE)
 TYPE = InnoDB;

DROP TABLE IF EXISTS Category_Ports;
CREATE TABLE IF NOT EXISTS Category_Ports(
 Category_Port_ID INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 Port_Type CHAR(25) NOT NULL,
 Port_Direction ENUM('input', 'output', 'inout') DEFAULT NULL,
 Collection BIT DEFAULT 0 NOT NULL,
 Optional BIT DEFAULT 0 NOT NULL,
 Inverted BIT DEFAULT 0 NOT NULL,
 Category_ID INT NOT NULL,
 INDEX category_index (Category_ID),
 FOREIGN KEY (Category_ID) REFERENCES Categories(Category_ID)
 ON DELETE CASCADE)
 TYPE = InnoDB;

DROP TABLE IF EXISTS Category_Port_Patterns;
CREATE TABLE IF NOT EXISTS Category_Port_Patterns(
 Category_Port_Pattern_ID INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 Port_Pattern_Regexp CHAR(250) NOT NULL,
 Category_Port_ID INT NOT NULL,

DROP DATABASE IF EXISTS IP_Shells;
CREATE DATABASE IP_Shells;
USE IP_Shells;

DROP TABLE IF EXISTS Libraries;

LibrariesCREATE TABLE IF NOT EXISTS (
EY, Library_ID CHAR(50) BINARY NOT NULL PRIMARY K

 Library_Name CHAR(50) BINARY NOT NULL UNIQUE,
 Available BIT DEFAULT 0 NOT NULL,
 HDL CHAR(20) DEFAULT "verilog",
 Library_Path CHAR(255) BINARY,
 Source_Path CHAR(255),
 Source_File CHAR(255),
 Sub_Modules_File CHAR(255),
 Stimulus_Path CHAR(255),
 Stimulus_File CHAR(255),
 Test_Bench_Path CHAR(255),
 Test_Bench_File CHAR(255),
 Doc_Path CHAR(255),
 Doc_File CHAR(255),
 Description TEXT)

TYPE = InnoDB ;

DROP TABLE IF EXISTS Categories;
CREATE TABLE IF NOT EXISTS Categories(
 Category_ID INT NOT NULL PRIMARY KEY AUTO_INCREME

L) Category_Name CHAR(50) UNIQUE NOT NUL
TYPE = InnoDB ;

DR
CR

109

 INDEX category_port_i
 FOREIGN KEY (Category
 ON DELETE CASCADE,
 Library_ID CHAR(50) BINARY NOT NULL,
 INDEX library_index (Library_ID),
 FOREIGN KEY (Library_ID) REFERENCES Libraries(Library_ID
 ON DELETE CASCADE)

ndex (Category_Port_ID),
_Port_ID) REFERENCES Category_Ports(Category_Port_ID)

)

 TYPE = InnoDB;

s(
 INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

ttern_Regexp CHAR(100) NOT NULL,
(50) BINARY NOT NULL,

 */
r this database... */

 */

s(
NULL PRIMARY KEY AUTO_INCREMENT,
 BINARY NOT NULL,
NULL,
ULT 0 NOT NULL,
P(14) NOT NULL,

ESTAMP(14),
Library_ID CHAR(50) BINARY NOT NULL)
TYPE = InnoDB;

Category_Port_ID INT,
Argument_Index INT NOT NULL,

 'output', 'inout') NOT NULL,

ent_ID)

 INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
Parameter_Name CHAR(20) BINARY NOT NULL,
Value_Type ENUM('INTEGER', 'REAL') NOT NULL,

T NULL DEFAULT 0,
 DEFAULT 32,

Component_ID)

 Add all the relevant indexes to the appropriate columns...

 (Component_Name);

ID);
_ID);

onent_index(Component_ID);

DROP TABLE IF EXISTS Exclusions;

ExclusionCREATE TABLE IF NOT EXISTS
D Exclusion_I

 Exclusion_Pa
 Library_ID CHAR
 INDEX library_index (Library_ID),
 FOREIGN KEY (Library_ID) REFERENCES Libraries(Library_ID)
 ON DELETE CASCADE)
 TYPE = InnoDB;

 /*
ables fo/* Create the "component related" t

/*
DROP TABLE IF EXISTS Components;
CREATE TABLE IF NOT EXISTS Component
 Component_ID INT NOT
 Component_Name CHAR(50)
 Category_ID INT NOT
 Available BIT DEFA
 Last_Modified TIMESTAM

, Doc_ID INT
ified TIM Doc_Last_Mod

DROP TABLE IF EXISTS Ports;
CREATE TABLE IF NOT EXISTS Ports(

NCREMENT, Port_ID INT NOT NULL PRIMARY KEY AUTO_I
 CHAR(30) BINARY NOT NULL, Port_Name

 Direction ENUM('input',
 Width_Expression CHAR(200) NOT NULL,
 Inverted BIT DEFAULT 0 NOT NULL,
 Doc_ID INT,
 Component_ID INT NOT NULL,

t_ID), INDEX component_index (Componen
 FOREIGN KEY (Component_ID) REFERENCES Components(Compon

SCADE) ON DELETE CA
 TYPE = InnoDB;

DROP TABLE IF EXISTS Parameters;

Parameters(CREATE TABLE IF NOT EXISTS
 Parameter_ID

 Signed BIT NO
 Value_Size INT NOT NULL
 Default_Value CHAR(30) NOT NULL,

 10, Base INT NOT NULL DEFAULT
 Parameter_Index INT NOT NULL,
 Doc_ID INT,
 Component_ID INT NOT NULL,
 INDEX component_index (Component_ID),

omponents(FOREIGN KEY (Component_ID) REFERENCES C
 ON DELETE CASCADE)
 TYPE = InnoDB;

* /

 *
 */
ALTER TABLE Components ADD INDEX name_index
ALTER TABLE Components ADD INDEX category_index (Category_

t_index (ComponentALTER TABLE Ports ADD INDEX port_componen
er_comp

110

ALTER TABLE Parameters ADD INDEX paramet

/*
 * Create client information tables…
 */
DROP TABLE IF EXISTS Company;
CREATE TABLE IF NOT EXISTS Company(
 Company_ID INT NOT NULL PRIMARY KEY AUTO_INCREMENT

(50) NOT NULL,
,

(16) BINARY NOT NULL,
 Department CHAR(100),

(50))
TYPE = InnoDB

 IND
REFERENCES Company(Company_ID)

 IND
 FOR

TYPE = InnoDB

 Company_Name CHAR
 CHAR Company_Password

 Street CHAR(100),
 City CHAR(20),
 State_County CHAR(20),
 Country CHAR(20),
 Zip_Post_Code CHAR(20),
 Company_Email CHAR(30),
 Company_Public_Key BLOB,
 Company_Phone CHAR(25),

(25), Company_Fax CHAR
 CHAR Company_Web

 ;

DROP TABLE IF EXISTS Client;
CREATE TABLE IF NOT EXISTS Client(
 User_Name CHAR(16) BINARY NOT NULL PRIMARY KEY,
 Password CHAR(16) NOT NULL DEFAULT "",
 File_Space CHAR(255) NOT NULL DEFAULT "",
 First_Name CHAR(20) NOT NULL,
 Last_Name CHAR(20) NOT NULL,
 Job_Title CHAR(50),
 Email CHAR(50),
 Public_Key BLOB,
 Company_ID INT NOT NULL,

 (Company_ID), EX Company_Index
 FOREIGN KEY (Company_ID)
 ON DELETE CASCADE)
 TYPE = InnoDB;

ry; DROP TABLE IF EXISTS Client_Libra
CREATE TABLE IF NOT EXISTS Client_Library(
 Client_Library_ID INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 User_Name CHAR(16) BINARY NOT NULL,
 EX USER_NAME_INDEX (User_Name),
 EIGN KEY (User_Name) REFERENCES Client(User_Name)
 ON DELETE CASCADE,
 Library_ID CHAR(50) BINARY NOT NULL,
 EX Library_Index (Library_ID),

ibraries(Library_ID)
 IND

 FOREIGN KEY (Library_ID) REFERENCES L
DE) ON DELETE CASCA

 ;

111

Appendix C:
Example synthesis script

esis script for Cadence’s BuildGates. This script,

s automatically generated and executed by the

hematic is to be synthesized.

_po_4x4
RTL_FILE sg_dct_idct_po_4x4.v

/timing_power/tcb013

 8

on 5
global fix_ ltiport_nets true

ames false
 1000

${RTL_FILE}

do_build_generic -all

set_top_timing_module ${TOP_MODULE}

Setting up Hierarchical and Timing Context"
issue_message -type info "--> Setting up Hierarchical & Timing Context ..."

Setting Ideal Clocks"
issue_message -type info "--> Setting Ideal Clocks ..."
set_clock ideal_clock -period 50 -waveform {0 25}

set_clock_arrival_time -rise 0 -fall 25 -clock ideal_clock clk
set_data_arrival_time 0 -clock ideal_clock [find -port -input *]
set_data_required_time 40 -clock ideal_clock [find -port -output *]

#Setting Design Rules

Shown below is an example synth

written in the TCL language, i

application server when a client sc

set TOP_MODULE

t
sg_dct_idct

se
set SRC_DIR .
set LIB_DIR
 /cadence/libraries/TSMC/TSMCHOME/digital/Front_End
lphp_211a
set RTL_DIR $SRC_DIR
set RPT_DIR $SRC_DIR
set SYN_DIR $SRC_DIR

set_global message_verbosity_level
set_global echo_commands true
set_global report

t_ mu
_precisi

se
set_global sdc_write_unambiguous_n
set_global line_length

read_tlf ${LIB_DIR}/tcb013lphptc.tlf

13lphptc set_global target_technology tcb0

read_verilog ${R

TL_DIR}/

112

issue_message -type in
set_slew_time_limit 2.
set_global fanout_load_limit 15

#Setting wire load models

fo "--> Setting Desgin Rules ..."
3 [find -ports -noclocks *]

issue_message -type info "--> Setting wire load..."

o_optimize

t

_MODU

h ved t straints

LE}.report.area

set_operating_conditions NCCOM
set_wire_load TSMC16K_Fsg_Conservative
set_wire_load_mode enclosed

d

write netlist
write_verilog -hier ${TOP_MODULE}.net.v

is # binary netl
write_adb ${TOP_MODULE}.adb

timing file
write_sdf ${TOP LE}.bg.sdf

has cct ac ie iming con#
report_timing > ${TOP_MODULE}.report.time
report_area -summary -hierarchical -cells > ${TOP_MODU

quit

113

Appendix D:
3rd party software licenses
The following text is the license file for projects covered by the Apache Software

• Jakarta ORO – the regular expression package

• Xerces – the XML parser.

tion pool

 ==
oftware License, Version 1.1

 Copyright (c) 2000-2002 The Apache Software Foundation. All rights

 modification, are permitted provided that the following conditions
 met:

*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*

* notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation", "Jakarta-Oro"
 * must not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache"
 * or "Jakarta-Oro", nor may "Apache" or "Jakarta-Oro" appear in their
 * name, without prior written permission of the Apache Software
Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

license, which includes the packages:

• DBCP – the database connec

/*
 * The Apache S
 *
 *
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 *
 * are

 * 2. Redistributions in binary form must reproduce the above copyright

114

 * WARRANTIES, INCLUDI
 * OF MERCHANTABILITY
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT
 * PECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMA

NG, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
AND FITNESS FOR A PARTICULAR PURPOSE ARE

 SOFTWARE FOUNDATION OR
, INDIRECT, INCIDENTAL,

S GES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

 OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * H
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*/

 following text it’s the license file for SAX, the XML API used in this project.

r
 of the SAX 2.0 source code, compiled code, and

-05-05

 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR

SUC DAMAGE.

The

SAX IS FREE

 property rights to SAX 2.0 (the Simple API foI hereby abandon any
), and release allXML

documentation contained in this distribution into the Public Domain.
y purpose. SAX comes with NO WARRANTY or guarantee of fitness for an

David Megginson
david@megginson.com

2000

115

The following text is the license file for the JDOM XML parser used in this project.

edistributions of source code must retain the above copyright
 notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 these conditions in the documentation and/or other materials
 provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products

4. Products derived from this software may not be called "JDOM", nor
" appear in their name, without prior written permission
JDOM Project Management <pm AT jdom DOT org>.

lternatively, the acknowledgment may be graphical using the logos
p://www.jdom.org/images/logos.

ES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT

 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

/*--

 $Id: LICENSE.txt,v 1.10 2003/04/10 08:36:05 jhunter Exp $

 Copyright (C) 2000-2003 Jason Hunter & Brett McLaughlin.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 1. R

 notice, this list of conditions, and the disclaimer that follows

 derived from this software without prior written permission. For
 written permission, please contact <license AT jdom DOT org>.

 may "JDOM
 from the

 In addition, we request (but do not require) that you include in the
 end-user documentation provided with the redistribution and/or in the
 software itself an acknowledgement equivalent to the following:
 "This product includes software developed by the

 JDOM Project (http://www.jdom.org/)."
 A
 available at htt

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 WARRANTI

116

 This software consists of voluntary contributions made by many
 individuals on behalf of the JDOM Project and was originally

created by Jason Hunter <jhunter AT jdom DOT org> and
Brett McLaughlin <brett AT jdom DOT org>. For more information on

 the JDOM Project, please see <http://www.jdom.org/>.

 */

117

The following text is the GNU license which covers usage of the MySQL database

 GNU LIBRARY GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
 numbered 2 because it goes with version 2 of the ordinary GPL.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library, or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them
with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 Our method of protecting your rights has two steps: (1) copyright
the library, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the library.

server and its JDBC driver.

118

 Also, for each distributor's protection, we want to make certain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we
ant its recipients to know that what they have is not the original

e original authors' reputations.

Final y, an y by software
tent We s distributing free
ftwa will icenses, thus in effect
ansforming the program into proprietary software. To prevent this,

 the ordinary
rams. This
ain
dinary

e; be sure to read it in full, and don't assume that anything in it is
e sa as i the o e.

 is that
to a
ut
is

alogous to running a utility program or application program. However, in
a
License

braries themselves. This Library General Public License is intended to

hieve
d it as regards

y

w
version, so that any problems introduced by others will not reflect on
th

 l y free program is threatened constantl
pa s. wish to avoid the danger that companie
so re individually obtain patent l
tr
we have made it clear that any patent must be licensed for everyone's
free use or not licensed at all.

 Most GNU software, including some libraries, is covered by
GNU General Public License, which was designed for utility prog
license, the GNU Library General Public License, applies to cert
designated libraries. This license is quite different from the or
on
th me n rdinary licens

 The reason we have a separate public license for some libraries
they blur the distinction we usually make between modifying or adding
program and simply using it. Linking a program with a library, witho
changing the library, is in some sense simply using the library, and
an
a textual and legal sense, the linked executable is a combined work,
derivative of the original library, and the ordinary General Public
treats it as such.

 Because of this blurred distinction, using the ordinary General
Public License for libraries did not effectively promote software
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

 However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
li
permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to ac
this as regards changes in header files, but we have achieve
changes in the actual functions of the Library.) The hope is that this
will lead to faster development of free libraries.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.

 Note that it is possible for a library to be covered by the ordinar
General Public License rather than by this special one.

119

 GNU LIBRARY GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library

neral Public License (also called "this License"). Each licensee is

The "Library", below, refers to any such software library or work

m "modification".)

nse; they are outside its scope. The act of
nning a program using the Library is not restricted, and output from

sed

es

ferring a copy,
d you may at your option offer warranty protection in exchange for a

ork under the terms of Section 1
ove, provided that you also meet all of these conditions:

y.

Ge
addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the ter

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this Lice
ru
such a program is covered only if its contents constitute a work ba
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library do
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of trans
an
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or w
ab

 a) The modified work must itself be a software librar

120

 b) You must cause the files modified to carry prominent notices

be supplied by an application program that uses
 the facility, other than as an argument passed when the facility

t,

of
 its purpose remains meaningful.

as separate works. But when you
stribute the same sections as part of a whole which is a work based

r, the intent is to

cise the right to control the distribution of derivative or

e Library

3. You may opt to apply the terms of the ordinary GNU General Public
o

hey refer to the ordinary GNU General Public License, version 2,
stead of to this License. (If a newer version than version 2 of the

e in

Once this change is made in a given copy, it is irreversible for
 to all

 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to

 is invoked, then you must make a good faith effort to ensure tha
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them
di
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rathe
exer
collective works based on the Library.

In addition, mere aggregation of another work not based on th
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

License instead of this License to a given copy of the Library. To d
this, you must alter all the notices that refer to this License, so
that t
in
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other chang
these notices.

that copy, so the ordinary GNU General Public License applies

121

subsequent copies and derivative works made from that copy.

e Library into a program that is not a library.

rivative of it, under Section 2) in object code or executable form

g equivalent access to copy the
urce code from the same place satisfies the requirement to

or
ry". Such a

rk, in isolation, is not a derivative work of the Library, and

is part of the Library, the object code for the work may be a
rivative work of the Library even though the source code is not.

If such an object file uses only numerical parameters, data

ng this object code plus portions of the

brary will still fall under Section 6.)

t uses the Library" with the Library to produce a
rk containing portions of the Library, and distribute that work

 This option is useful when you wish to copy part of the code of
th

 4. You may copy and distribute the Library (or a portion or
de
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offerin
so
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled
linked with it, is called a "work that uses the Libra
wo
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that
de
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containi
Li

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also compile or
link a "work tha
wo
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse

122

engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the

use are covered by
is License. You must supply a copy of this License. If the work

he

onding
 machine-readable source code for the Library including whatever

 that
at the

 a modified
 executable containing the modified Library. (It is understood

 the

d for at
 least three years, to give the same user the materials

copy
he above

 specified materials from the same place.

producing the executable from it. However, as a special exception,
ormally

It may happen that this requirement contradicts the license

y
ned

 based on

Library is used in it and that the Library and its
th
during execution displays copyright notices, you must include t
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresp

 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work
 uses the Library", as object code and/or source code, so th
 user can modify the Library and then relink to produce

 that the user who changes the contents of definitions files in
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Accompany the work with a written offer, vali

 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 c) If distribution of the work is made by offering access to
 from a designated place, offer equivalent access to copy t

 d) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
re
the source code distributed need not include anything that is n
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other librar
facilities not covered by this License, and distribute such a combi
library, provided that the separate distribution of the work
the Library and of the other library facilities is otherwise

123

permitted, and provided that you do these two things:

t is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

s you permission to modify or
stribute the Library or its derivative works. These actions are

e, by
the
so, and

ng or modifying
e Library or works based on it.

 a license from the
iginal licensor to copy, distribute, link with or modify the Library

ther
herein.

u are not responsible for enforcing compliance by third parties to

nt or
t

to satisfy simultaneously your obligations under this
cense and any other pertinent obligations, then as a consequence you

t
y by

o
ely from distribution of the Library.

r any
ly,

e any

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of i

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grant
di
prohibited by law if you do not accept this License. Therefor
modifying or distributing the Library (or any work based on
Library), you indicate your acceptance of this License to do
all its terms and conditions for copying, distributi
th

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives
or
subject to these terms and conditions. You may not impose any fur
restrictions on the recipients' exercise of the rights granted
Yo
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreeme
otherwise) that contradict the conditions of this License, they do no
excuse you from the conditions of this License. If you cannot
distribute so as
Li
may not distribute the Library at all. For example, if a paten
license would not permit royalty-free redistribution of the Librar
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be t
refrain entir

If any portion of this section is held invalid or unenforceable unde
particular circumstance, the balance of the section is intended to app
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infring

124

patents or other property right claims or to contest validity of any
ch claims; this section has the sole purpose of protecting the

de

n reliance on consistent application of that
stem; it is up to the author/donor to decide if he or she is willing

t

is section is intended to make thoroughly clear what is believed to

ted in

add
tries,

t thus
cluded. In such case, this License incorporates the limitation as if

n,

ing version number. If the Library
ecifies a version number of this License which applies to it and

 by

sh to incorporate parts of the Library into other free
ograms whose distribution conditions are incompatible with these,

ring

T HOLDERS AND/OR
HER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

BRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

su
integrity of the free software distribution system which is
implemented by public license practices. Many people have ma
generous contributions to the wide range of software distributed
through that system i
sy
to distribute software through any other system and a licensee canno
impose that choice.

Th
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restric
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may
an explicit geographical distribution limitation excluding those coun
so that distribution is permitted only in or among countries no
ex
written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present versio
but may differ in detail to address new problems or concerns.

Each version is given a distinguish
sp
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wi
pr
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sha
and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGH
OT
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LI
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

125

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

 MODIFY
YOU

E

Y TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
CH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

 END OF TERMS AND CONDITIONS

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE TH
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRAR
SU
DAMAGES.

126

The following text is the license file for the Borland Enterprise Server (BES) used in

TICE: THIS BORLAND SOFTWARE PRODUCT (TOGETHER WITH ITS ACCOMPANYING
CUME ATION F BORLAND SOFTWARE

URCHASER, SUBJECT TO THE FOLLOWING LICENSE AGREEMENT ("LICENSE"). PLEASE
READ THIS LICENSE CAREFULLY BEFORE INSTALLING OR USING THE PRODUCT. A COPY
OF THIS LICENSE IS AVAILABLE FOR YOUR FUTURE REFERENCE IN THE "LICENSE.TXT"
FILE PROVIDED WITH THE PRODUCT.

YOU MAY ACCEPT THIS LICENSE BY PLACING A CHECK IN THE "I ACCEPT THE TERMS OF
THE LICENSE AGREEMENT" BOX BELOW. YOU MAY REJECT THIS LICENSE, AND
TERMINATE THIS INSTALLATION PROCESS, BY PLACING A CHECK IN THE "I DO NOT
ACCEPT THE TERMS OF THE LICENSE AGREEMENT" BOX BELOW. IF YOU DO NOT ACCEPT
THIS LICENSE, THEN YOU MAY NOT INSTALL OR USE THE PRODUCT. IN THAT CASE,
YOU MAY, WITHIN TEN (10) DAYS AFTER YOU FIRST RECEIVED THE PRODUCT, RETURN
IT TO BORLAND OR YOUR BORLAND AUTHORIZED RESELLER, ALONG WITH ITS ORIGINAL
PACKAGING AND PROOF-OF-PURCHASE, FOR A FULL REFUND. ANY USE BY YOU OF THIS
PRODUCT ALSO CONSTITUTES YOUR ACCEPTANCE OF THESE TERMS.

Borland is only willing to grant you this License if you obtained the
Product from Borland or a Borland authorized reseller. If you obtained the
Product from any other source you may not install or use the Product.

1. OWNERSHIP. The Product is proprietary to Borland. The Product is
licensed, not sold, to you notwithstanding any reference herein to
"purchases." You acknowledge and agree that: (a) the Product is protected
under U.S. copyright and other laws; (b) Borland and its licensors retain
all copyrights and other intellectual property rights in the Product; (c)
there are no implied licenses under this License, and any rights not
expressly granted to you hereunder are reserved by Borland; (d) you acquire
no ownership or other interest (other than your license rights) in or to the
Product; and (e) Borland owns all copies of the Product, however made. You
agree that you will not, at any time, contest anywhere in the world
Borland's ownership of the Product, nor will you challenge the validity of
Borland's rights in the Product. You have no rights hereunder to use any
trademark or service mark belonging to Borland.

2. GRANT OF LICENSE AND SCOPE OF USE.

2.1 Licenses and License Keys. For each license which you acquire to use
the Product, the edition of the Product (i.e., Web Edition, Visibroker
Edition or AppServer Edition) which you are granted a license to use and the
type of license (i.e., development or deployment) which you are granted are
set forth on a license key certificate (a "License Key Certificate") which
is provided to you either with the Product media or separately by Borland.

this project.

BORLAND SOFTWARE CORPORATION
LICENSE TERMS

BORLAND ENTERPRISE SERVER

NO
DO NT , THE "PRODUCT") IS THE PROPERTY O
CORPORATION ("BORLAND"). THE PRODUCT IS MADE AVAILABLE TO YOU, THE ORIGINAL
P

127

In order to activate and use the Product pursuant to each license which you
acquire, you must enter the appropriate license key ("License Key") when
prompted by the Product. For each license to use the Product which you
acquire, the License Key will be included on the corresponding License Key
ertificate.

Licenses, License Key Certificates and/or
f any, should be included with the Product media you should

rland authorized reseller.

2 Development License. The terms of this Section 2.2 are applicable to

rganization ("Named User") solely to develop,
mpile (including byte code compile), and test, in source or object code

loym

RDER TO

l rights,

r execute the Product on
re computers than the number of Licensed Copies that Borland has expressly

it ow more than one (1) Named User to
e each Licensed Copy.

d.

C

For more information on which
License Keys, i
contact Borland or your Bo

2.
you only if you have purchased a Development License for the Product
directly from Borland or a Borland authorized reseller.

Subject to the terms and conditions of this Agreement, Borland grants to you
a personal, nonexclusive, nontransferable and limited license to install and
execute the Product on one (1) computer for use by you or, if you are an
entity, one (1) person in your o
co
form, your own application programs and other works ("Works") designed to
work with the Product ("Development License"). You may also make one (1)
backup copy of the Product solely to replace the original copy provided to
you if the original copy is damaged or destroyed, provided that you may not
deploy any such backup copy on a backup server without first obtaining the
requisite licenses from Borland. Unless you have purchased a Deployment
License from Borland (defined below) or a Borland authorized reseller, you
may not deploy or use the Product on a production basis.

The Product contains certain time-out features designed to prevent the
Product from being deployed in a runtime environment for longer than a
specified period without Deployment License keys. Deployment License keys
will be provided to you at such time as you purchase the requisite
Dep ent Licenses.

WORKS THAT YOU CREATE USING THE PRODUCT MAY REQUIRE THE PRODUCT IN O
RUN. WITHOUT THE REQUISITE DEPLOYMENT LICENSE KEYS, THE PRODUCT WILL BE
DISABLED AND THOSE WORKS MAY NO LONGER RUN. YOU SHOULD THEREFORE TAKE
PRECAUTIONS TO AVOID ANY LOSS OF DATA THAT MIGHT RESULT.

You may purchase from Borland the right to make multiple copies of the
Product (each, a "Licensed Copy") for development use. Such rights will be
effective only when granted in writing by Borland and are conditioned upon
your payment of the applicable fees. If you purchase such additiona
you are granted, for each Licensed Copy a single Development License as set
forth in Section 2.1, subject to all the terms and conditions of this
Agreement. You agree that you will not install o
mo
perm ted you to make and you will not all
us

All rights not specifically granted to you herein are retained by Borlan

128

2.3. Deployment License. The terms of this Section 2.3 are applicable to
you only if you have purchased a Deployment License for the Product direct
from Borland.

Deployment Lice

ly

nses are granted subject to certain limitations and usage
rameters specific to the type of Deployment License you have acquired from

and offers the types
 Deployment Licenses for the Product listed below:

u
usive,

ntransferable and limited license to install and execute the Product in

 a

han the number of
Us designated on your invoice and to permit the Product as so installed to

 You

e,

e total number of Product copies used by you and the manner in which such

ce
).

 you would like to install and/or deploy a greater number of copies of the

rchased a Standby Server License for the Product
om Borland or a Borland authorized reseller.

rland grants to you a personal, nonexclusive, nontransferable and limited
license to install the Product on a single standby server and to use the
Product in object code form solely in a standby, non-production mode for use

pa
Borland. Your invoice will show the number of Deployment Licenses, by
license type, for the Product you have acquired from Borland and will list
the usage parameters for each Deployment License. Borl
of

(a) CONCURRENT USER: For each Concurrent User Deployment License yo
purchase, if any, Borland grants you the personal, nonexcl
no
object code form on a production basis on one (1) computer and to permit the
Product as so installed to be accessed at any one time by no more than
number of servers or users (i.e. connections) indicated on your invoice
("Concurrent Users"). In exercising your rights under a Concurrent User
Deployment License, you must provide reasonable security or administrative
system to ensure that the number of Concurrent Users never exceeds the
number indicated on your invoice.

(b) SERVER/CPU: For each Server/CPU Deployment License you purchase, if
any, Borland grants you the personal, nonexclusive, nontransferable and
limited license to install and execute the Product in object code form on
production basis on one (1) server hardware unit that is operating the
platform designated on your invoice and that has no more t
CP
be accessed at any one time by an unlimited number of concurrent users.
may not install or execute the Product on any type of device that has a
greater number of CPUs and you may not, under a given CPU Deployment Licens
install or execute the Product on more than one (1) computer.

Th
copies are used may not exceed or deviate from the type and number of
licenses acquired by you and the usage parameters indicated on your invoi
(i.e, type of platform and number of CPUs, or number of Concurrent Users

If
Product than the number of Deployment Licenses you have acquired from
Borland or if you would like to alter the type or usage parameters of any
Deployment License you have acquired from Borland, you must first contact
Borland to obtain written approval and pricing for any such modifications to
your license.

All rights not specifically granted to you herein are retained by Borland.

2.4 Standby Server License. The terms of this Section 2.4 are applicable
to you only if you have pu
fr

Bo

129

in the event the primary server fails ("Standby Server License"). You may
not use the Product on a production basis under a Standby Server License
except during periods when one or more copies of the Product for which you
ve purchased a Deployment License are nonfunctional, and, in such event,

able

rland grants to you a personal, nonexclusive, nontransferable and limited

 purposes

tion
development tool, library, component, or

y other product that is generally competitive with or a substitute for the
c

th

apply,

esale, lending,
asing, deployment or distribution to any party, including without

end

ecifically granted to you herein are retained by Borland.

ES.

ying printed or on-line documentation and that are necessary
 use Works created using the Product ("Redistributables"). From time to

fer to the documentation, including any "readme" or "deploy" files

ode that is entirely your
n and does not contain any Redistributables.

 of

ha
only in accordance with the terms of the Deployment License.

2.5 Backup Server License. The terms of this Section 2.5 are applic
to you only if you have purchased a Backup Server License for the Product
from Borland or a Borland authorized reseller.

Bo
license to install the Product on a single backup server and to use the
Product in object code form solely for backup or disaster recovery
("Backup Server License"). You may not use the Product on a production
basis except during periods when one or more copies of the Product for which
you have purchased a Deployment License are nonfunctional, and, in such
event, only in accordance with the terms of the Deployment License.

2.6 Competitive Product Restrictions. You may not include the Product or
any component thereof, including any Redistributables (as defined in Sec
3) in any general-purpose software
an
Produ t or any other Borland product offerings; nor may you use the Product
to create a product or operate a service that is generally competitive wi
the Product or any other Borland product offerings, including any general-
purpose software development tool. The foregoing restriction does not
however, to your use of the Product to develop "plug-ins" (i.e.,
integrations created using the Product's open tools API) so long as such
plug-ins are designed to provide supplementary functionality to the Product.

2.7 No Sublicensing, Resale or Distribution; Certain Restrictions. You
are not permitted to reproduce the Product for sublicensing, r
le
limitation, distributing the Product as part of a VAR, OEM, distributor or
reseller arrangement. If you integrate the Product into a Work and int
to distribute or resell the resulting integrated Work, you must contact
Borland to obtain the appropriate distribution license. All rights not
sp

3. GENERAL TERMS THAT APPLY TO COMPILED PROGRAMS AND REDISTRIBUTABL

3.1 Redistributables. The Product may include certain files, libraries
and/or source code specifically designated as "redistributables" by Borland
in the accompan
to
time, Borland may designate other files as Redistributables. You should
re
provided with the Product, for additional information regarding
Redistributables. Subject to the terms and conditions of this License, you
may freely redistribute source code or compiled c
ow

3.2 Licensing of Redistributables. Subject to the terms and conditions
this License including the restrictions of Section 3.3, Borland grants you

130

the personal, non-exclusive, non-transferable and limited license to: (a)
make exact copies of the Redistributables and distribute those copies sole
as components of your Works and solely as required for permitting end users
of the Works ("End Users") to install and execute the Works; (b) install and
execute Redistributables, without modification, on computers t

ly

hat you own or

ssess solely for your own internal use; and (c) sublicense to your End

 use, subject to End Users'
mpliance with the restrictions in Section 5 as to Redistributables. The

3 Certain Restrictions. Regardless of any modifications that you make

)

f

oduct or
ar

at appears on the Product, and you may not remove or alter any Borland

ality

ection 4, there
e no third party beneficiaries to this Agreement. Consequently, Borland

ovided to you the original purchaser of the Product, as set forth herein,

ers,

5 Third Party Software. The Product, including Redistributables, may

po
Users the personal, non-exclusive, non-transferable right to install and
execute Redistributables, without modification, solely as components of
Works and solely for such End Users' own internal
co
rights granted to you under this Section 3.2 may not be exercised by others,
including co-developers, regardless of how you might compile, link, or
package your Works. These rights apply only to Redistributables and to no
other file, library, source code or other component or derivative work of
the Product. They may be exercised only with respect to Works created by
you using a duly licensed, properly registered copy of the Product.

3.
and regardless of how you might compile, link, or package your Works: (a)
you may not permit your End Users to modify or further distribute
Redistributables or use Redistributables in any program that they create; (b
you may not use Borland's or any of its suppliers' names, logos, or
trademarks to market your Works, except to state descriptively that your
Work was written using the Product; (c) you may not incorporate or
distribute a Redistributable with a Work or other program that is capable o
functioning as a general purpose development tool, library, or component, or
is otherwise generally competitive with or a substitute for the Pr
the Redistributable itself; (d) all copies of the Works you create must be
a valid copyright notice, either your own or the Borland copyright notice
th
copyright, trademark or other proprietary rights notice contained in any
portion of the Redistributables; and (e) you may only distribute
Redistributables with Works that add primary and substantial function
to the Redistributables and are not merely a set or subset of any of the
Redistributables, and that are created in accordance with the terms of this
License.

3.4 Relationship with End Users. Except as set forth in S
ar
provides no warranty at all to any person, other than the limited warranty
pr
and you will be solely responsible to your End Users (or anyone else who
uses or acquires Works) for support, service, upgrades, or technical or
other assistance (including with respect to any Redistributables included
therein), and such persons will have no right to contact Borland for any
services or assistance. You will indemnify, defend and hold Borland, its
licensors, its suppliers and each of their respective employees, offic
directors and affiliates, harmless from and against any claims or
liabilities arising out of or related to the use, procurement, reproduction
or distribution of your Works by third parties.

3.
include source code, redistributable files, and/or other files provided by a
third party vendor ("Third Party Product"). Since use of Third Party

131

Product might be subject to license restrictions imposed by the third party
vendor, you should refer to the on-line documentation (if any) provided with
Third Party Product for any license restrictions imposed by the third party
vendor. In any event, any license restrictions imposed by a third party
vendor are in addition to, not in lieu of, the terms and conditions of this
License.

3.6 Other Rights. Contact Borland for the applicable royalties due an
other licensing terms for all other uses or distribution of the
Redistributables.

4. SPECIAL TERMS.
The following terms and conditions ("Special Terms") are specific to certain
editions, versions and components of the Product and are in addition to the
provisions of Sections 2 and 3. If any provision of the Special Terms
applicable to the Product conflicts with any other provision of this

d

 License,
en the provision of the Special Terms will supercede and control.

d right

u
 test

 or includes the file "jdslicense.jar." You are not permitted to
produce JDATASTORE for sublicensing, resale, lending, leasing, deployment

m

l,

olely for your own internal
ta processing purposes to provide a limited number of local support

ed

th

4.1 SPECIAL TERMS THAT APPLY TO BORLAND ENTERPRISE SERVER APPSERVER
EDITION, VISIBROKER EDITION AND WEB EDITION

ADDITIONAL LICENSE TERMS FOR API DECOMPILER
Notwithstanding the prohibition hereunder against decompiling the Product,
Borland grants to you as the licensed user of the Product the limite
to use that portion of the Product identified as "API Decompiler" for
inspecting the public application programming interface (API) of the JAVA
BEANS COMPONENT LIBRARY, DATAEXPRESS, DBSWING and OPENTOOLS API modules.

ADDITIONAL LICENSE TERMS FOR JDATASTORE
The portion of the Product identified as JDATASTORE (if any) is not a
Redistributable. Notwithstanding any provision herein to the contrary, yo
may only use JDATASTORE under this License to develop, compile and
Works and for no other purpose. You must purchase a separate JDATASTORE
deployment license from Borland or an authorized reseller for each copy of
any Work that you deploy if the Work incorporates, or requires use of,
JDATASTORE
re
or distribution to any party, including without limitation, distributing
JDATASTORE as part of a VAR, OEM, distributor or reseller arrangement. If
you integrate JDATASTORE or the file "jdslicense.jar" into a Work and intend
to distribute or resell the resulting integrated Work, you must contact
Borland to obtain the appropriate distribution license.

The following two types of JDATASTORE deployment licenses are available fro
Borland:

(a) "Local Server License." When you purchase a Local Server License with
respect to a particular licensed Work, Borland grants you a persona
nonexclusive, nontransferable and limited license to install and execute
JDATASTORE on one (1) computer ("Local Server") s
da
connections. A "local support connection" is a communication session
between JDATASTORE, as resident on the Local Server, and a copy of the
licensed Work that is also executing on the Local Server and that is us

132

solely for your internal data processing needs. For more information on the
number of local support connections accessible under a Local Server License
you should contact Borland directly.

(b) "Unlimited Server License." When you purchase an Unlimited Server
License with respect to a particular Work, Borland grants you a personal,
nexclusive, nontransferable and limited license to install and execute

of support
port connection" is a communication session between

ATASTORE, as resident on the Unlimited Server, and a copy of the licensed
her on the Unlimited Server or on a remote machine.

2 SPECIAL TERMS THAT APPLY TO APPSERVER EDITION AND VISIBROKER EDITION

DITIONAL LICENSE TERMS FOR VISIBROKER
BROKER is not a Redistributable

must

es
e of, VISIBROKER. You are not permitted to reproduce VISIBROKER for

eployment or distribution to any
 a

Work,

ork that uses such

rtion of the Product. You are not permitted to reproduce BORLAND

ployment or distribution to any party, including without
mitation, distributing BORLAND VISIBROKER EDITION SECURITY SERVICE as part

nd

no
JDATASTORE on one (1) computer ("Unlimited Server") solely for your own
internal data processing purposes to provide an unlimited number
connections. A "sup
JD
Work that is executing eit
You may not, under an Unlimited Server License, install or execute
JDATASTORE on more than one (1) computer. An Unlimited Server License for
JDATASTORE is also granted with each Deployment License purchased for
Borland Enterprise Server Web Edition.

4.
ONLY

AD
The portion of the Product identified as VISI
and is licensed for development purposes only. Notwithstanding any provision
herein to the contrary, you may only use VISIBROKER under this License for
developing, compiling and testing Works and for no other purpose. You
purchase a separate VISIBROKER deployment license from Borland or an
authorized reseller before deploying any Work that incorporates, or requir
us
sublicensing, resale, lending, leasing, d
party, including without limitation, distributing VISIBROKER as part of
VAR, OEM, distributor or reseller arrangement. If you integrate VISIBROKER
into a Work and intend to distribute or resell the resulting integrated
you must contact Borland to obtain the appropriate distribution license.

ADDITIONAL LICENSE TERMS FOR BORLAND VISIBROKER EDITION SECURITY SERVICE
The portion of the Product identified as BORLAND VISIBROKER EDITION SECURITY
SERVICE is not a Redistributable and is included on the Product media for
your convenience only. This License does not permit you to execute, or
otherwise use the BORLAND VISIBROKER EDITION SECURITY SERVICE portion of
this Product for any purpose. You must purchase a separate Development
and/or Deployment License for BORLAND VISIBROKER EDITION SECURITY SERVICE
directly from Borland before developing or deploying any W
po
VISIBROKER EDITION SECURITY SERVICE for sublicensing, resale, lending,
leasing, de
li
of a VAR, OEM, distributor or reseller arrangement. If you integrate
BORLAND VISIBROKER EDITION SECURITY SERVICE into a Work and intend to
distribute or resell the resulting integrated Work, you must contact Borla
to obtain the appropriate distribution license.

4.3 SPECIAL TERMS THAT APPLY TO APPSERVER EDITION ONLY

ADDITIONAL LICENSE TERMS FOR BORLAND APPSERVER

133

The portion of the Product identified as BORLAND APPSERVER is not a
Redistributable and is licensed for development purposes only.
Notwithstanding any provision herein to the contrary, you may only use
RLAND APPSERVER under this License for developing, compiling and testing

R.

,

nse.

 you have received an evaluation or trial version of the Product, you may

for the sole purpose of evaluating or demonstrating the Product. Your
cense is for a term of sixty (60) days from the date you obtain the serial

otherwise begin using the Product

 or

 a
e

g
e Evaluation Period, you should contact Borland or a Borland authorized

E

ware

and's
ies

rd-party Software) and
mit certain uses thereof.

DITIONAL LICENSE TERMS FOR SONICMQ - JAVA TECHNOLOGY RESTRICTIONS

BO
Works and for no other purpose. You must purchase a separate BORLAND
APPSERVER deployment license from Borland or an authorized reseller before
deploying any Work that incorporates, or requires use of, BORLAND APPSERVE
You are not permitted to reproduce BORLAND APPSERVER for sublicensing,
resale, lending, leasing, deployment or distribution to any party, including
without limitation, distributing BORLAND APPSERVER as part of a VAR, OEM
distributor or reseller arrangement. If you integrate BORLAND APPSERVER
into a Work and intend to distribute or resell the resulting integrated Work,
you must contact Borland to obtain the appropriate distribution lice

4.4 ADDITIONAL LICENSE TERMS APPLICABLE TO EVALUATION SOFTWARE

If
exercise your rights under this license to use the Product and to create
Works
li
number and license key for the Product or
("Evaluation Period"). Unless you have purchased a Deployment License from
Borland (defined below) or a Borland authorized reseller, you may not deploy
or use the Product on a production basis.

You may not use the Product for any commercial, business, governmental
institutional purpose of any kind. At the end of the Evaluation Period,
further use of the Product by you is prohibited without the purchase of
commercial license. If you do not purchase a license for the Product at th
end of the Evaluation Period, you hereby agree to permanently remove or
delete the Product from all computer systems on which it was installed and
destroy any software and documentation received, and not to reinstall a new
copy of the Product. If you desire to continue to use the Product followin
th
reseller to order commercial licenses to use the Product.

THE PRODUCT CONTAINS A TIME-OUT FEATURE THAT DISABLES ITS OPERATION AFTER
THE EXPIRATION OF THE EVALUATION PERIOD. WORKS THAT YOU CREATE DURING TH
EVALUATION PERIOD MAY REQUIRE THE PRODUCT IN ORDER TO RUN. UPON EXPIRATION
OF THE EVALUATION PERIOD, THOSE WORKS MAY NO LONGER RUN. YOU SHOULD
THEREFORE TAKE PRECAUTIONS TO AVOID ANY LOSS OF DATA THAT MIGHT RESULT.

4.5 ADDITIONAL LICENSE TERMS APPLICABLE TO THIRD PARTY SOFTWARE

Certain components of the Product use or incorporate third-party soft
programs and/or libraries ("Third-party Software") which are loaded (in both
object and source code form) on the Product media. You agree that Borl
third-party licensors and suppliers are intended third party beneficiar
of all terms and conditions of this License intended to protect intellectual
property rights in the Product (including the Thi
li

AD

134

The following Java Technology Restrictions are applicable to the comp
of the Product identified as SonicMQ: You may not modify the Jav
Interface ("JPI", identified as classes contained within the "java" pack
or any subpackages of the "java" package), by creating additional classes
within the JPI or otherwise causing the addition to or modification of
classes in the JPI. In the event that you otherwise create an additional
class and associated API(s) which (i) extends the functionality of a Java
platform, and (ii) is exposed to third party software developers for the
purpose of developing additional software which invokes such additional API,
you must promptly publish broadly an accurate specification for such API fo
free use by all developers. You may not create, or authorize your license
to create additional classes, interfaces, or subpackages that are in any way
identified as "java", "javax", "sun" or similar convention as specified by

onent
a Platform

age

the

r
es

n in any class file naming convention.

is product includes code licensed from RSA Data Security.

d by the Apache Software
undation without prior written permission. Products derived from the

.

roduct

oduct or any component thereof to any third party except as expressly
r emble, or

herwise attempt to derive the source code of the Product; (e) remove,

as
ctions 2, 3 or 4; or (h) disclose or publish

rformance benchmark results for the Product. The rights granted under

license to use other Borland software. Furthermore, you may not permit your

Su

Th

ADDITIONAL LICENSE TERMS FOR APACHE SOFTWARE
The Product or third party products or components included with or in the
Product may include software developed by the Apache Software Foundation
(http://www.apache.org/). Copyright (c) 1999-2000 The Apache Software
Foundation. All rights reserved. The names "Xerces", "Tomcat", "Apache"
and "Apache Software Foundation" must not be used to endorse or promote
products derived from the software develope
Fo
software developed by the Apache Software Foundation may not be called
"Apache", nor may "Apache" appear in their name, without prior written
permission. For written permission, please contact apache@apache.org.

ADDITIONAL LICENSE TERMS FOR GNU COMPONENT(S)
No GNU public license or similar open source licenses contained within the
Product or any third party products or components included with or in the
Product shall be removed or modified and no proprietary rights notices or
agreements accompanying the Product or any third party products or
components included with or in the Product shall be deleted

5. LIMITATIONS. You may not: (a) modify, adapt, alter, translate, or
create derivative works of the Product or merge the Product with other
software other than as described in the Product's accompanying documentation
or as approved of in writing by Borland; (b) lease, rent or loan the P
to any third party; (c) sublicense, distribute or otherwise transfer the
Pr
autho ized under Section 3; (d) reverse engineer, decompile, disass
ot
alter, or obscure any confidentiality or proprietary notices (including
copyright and trademark notices) of Borland or its suppliers on the Product;
(f) allow third parties to access or use the Product such as in a time-
sharing arrangement or operate the Product as part of a service bureau or,
except as expressly authorized under Sections 2, 3 or 4, otherwise for the
use or benefit of third parties; (g) reproduce or use the Product except
expressly authorized under Se
pe
this License apply only to this Product. You must procure a separate

135

End Users to conduct the restricted activities limited by items (a) through
(e), (g) and (h) above insofar as they apply to Redistributables, and such
End User's sublicense rights to the Redistributables are conditioned upon
compliance with such limitations. The limitations in this Section 5 apply
equally to your use of the Product, in whole or in part, including any
component or Redistributable.

6. LIMITED WARRANTY AND DISCLAIMER. Borland warrants to you, the
original purchaser and to no other party, that any physical media included
with the Product, as and when provided to you, will be free of physical
defects in materials and workmanship for a period of ninety (90) days after
the date that you initially acquire the Product. Your exclusive remedy and
Borland's sole liability for breach of this warranty is that Borland will
replace any defective media returned to Borland within the ninety (90) day
rranty period. This warranty does not apply to damages resulting from

anted as above
r the remainder of the original warranty period or twenty (20) days from

r. EXCEPT FOR THIS EXPRESS

E
R THE

ION

ME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
ARRANTY GIVES YOU SPECIFIC

under
rvices to you.

ch services, if available, must be purchased separately. If, pursuant to

e

u

wa
misuse, abuse or neglect. Any replacement media will be warr
fo
the date we ship it to you, whichever is longe
LIMITED WARRANTY, THE PRODUCT IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF
ANY KIND. BORLAND HEREBY EXCLUDES AND DISCLAIMS ALL IMPLIED OR STATUTORY
WARRANTIES, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, QUALITY, NON-INFRINGMENT, TITLE, RESULTS, EFFORTS OR
QUIET ENJOYMENT. THERE IS NO WARRANTY THAT THE PRODUCT WILL BE ERROR-FRE
OR WILL FUNCTION WITHOUT INTERRUPTION. YOU ASSUME THE ENTIRE RISK FO
RESULTS OBTAINED USING THE PRODUCT. TO THE EXTENT THAT BORLAND MAY NOT
DISCLAIM ANY WARRANTY AS A MATTER OF APPLICABLE LAW, THE SCOPE AND DURAT
OF SUCH WARRANTY WILL BE THE MINIMUM PERMITTED UNDER SUCH LAW.

SO
EXCLUSION MAY NOT APPLY TO YOU. THIS LIMITED W
LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER LEGAL RIGHTS, WHICH VARY FROM
STATE TO STATE.

7. SERVICES; UPDATES; PRODUCT CHANGES. Borland is not required
this License to provide any installation, training or other se
Su
a separate support agreement or otherwise, Borland provides you with a new
release, error correction, update, upgrade or other modification to the
Product, such modification will be deemed part of the Product, and subject
to the terms of this License, unless the modification is expressly provided
subject to a separate license agreement. Borland reserves the right at any
time not to release or to discontinue release of any Product and to alter
prices, features, specifications, capabilities, functions, licensing terms,
release dates, general availability or other characteristics of any futur
releases of the Product.

8. REGISTRATION. You must register the Product with Borland as a
condition to your rights to use the Product. You will be prompted to
register the Product at the time of your installation or first use of the
Product, at which time you will be notified (or directed to online resources
explaining) how registration information provided by you may be used and yo
will be afforded the opportunity to opt out of certain uses of such
information.

136

9. CONFIDENTIALITY. The Product (including its underlying source code)
and the terms of this License contain confidential information of Borland.
You agree to hold this information in confidence, not disclose it to any
person (other than your employees and individual contractors who use the
Product and who have agreed to keep confidential any of Borland's
confidential information that you provide to them), and not use it for any
rpose other than the use and operation of the Product as permitted under

 L is

,

CT,
E

L OR
NSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO

ht
third party (not your affiliate) based on a claim that the

oduct infringes upon any U.S. copyright and Borland will pay those costs
da

ns;

,

e Product and refund a pro rata portion of any
cense fee you paid under this License, based on a three (3) year product

. der
ed

e

most
n made available to you; or (d) any modification of the

oduct by any person other than Borland or its authorized agents ("Excluded

pu
this icense. These restrictions do not apply to any information which
or becomes (through no fault of yours) publicly available. If you are
required by law or order of a court or other government authority to
disclose Borland's confidential information, then you will immediately
notify Borland as soon as possible, but in any event prior to the disclosure
and will cooperate with Borland, at its expense and request, in any lawful
action to contest or limit the scope of such required disclosure.

10. LIMITATION OF LIABILITY. IN NO EVENT WILL BORLAND BE LIABLE TO ANY
PARTY FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, EXEMPLARY, SPECIAL OR
PUNITIVE DAMAGES, INCLUDING ANY LOSS OF PROFIT, REVENUE, BUSINESS
OPPORTUNITY OR DATA, ARISING FROM OR RELATING TO THIS LICENSE OR THE PRODU
WHETHER IN CONTRACT, IN TORT OR OTHERWISE, EVEN IF BORLAND KNEW, SHOULD HAV
KNOWN OR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BORLAND'S
TOTAL CUMULATIVE LIABILITY ARISING FROM OR RELATED TO THIS LICENSE OR THE
PRODUCT, WHETHER IN CONTRACT, IN TORT OR OTHERWISE, WILL NOT EXCEED THE FEES
ACTUALLY PAID BY YOU UNDER THIS LICENSE. THIS SECTION 10 WILL APPLY EVEN IF
AN EXCLUSIVE REMEDY HEREUNDER HAS FAILED OF ITS ESSENTIAL PURPOSE.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTA
CO
YOU.

11. THIRD PARTY CLAIMS. Borland will defend and settle any suit broug
against you by a
Pr
and mages finally awarded against you in such suit that are specifically
attributable to such claims or those amounts payable by you under a
settlement of such suit. The foregoing obligations are conditioned on you:
(a) notifying Borland promptly in writing of such action; (b) giving Borland
sole control of the defense thereof and any related settlement negotiatio
and (c) cooperating and, at Borland's request and expense, assisting in such
defense. If the Product becomes, or in Borland's opinion is likely to become
the subject of an infringement claim that Borland is required to defend,
then Borland may (at its option and expense) either: (a) procure for you
the right to continue using the Product; (b) replace or modify the Product
so that it becomes non-infringing; or (c) terminate this License and your
rights hereunder to use th
li
life Notwithstanding the foregoing, Borland will have no obligation un
this Section 11 or otherwise with respect to any infringement claim bas
upon: (a) any use of the Product not in accordance with this License or th
products accompanying documentation: (b) any use of the Product in
combination with other products, equipment, software, or data not provided
by Borland; (c) any use of any version of the Product other than the
current versio
Pr

137

Claims"). You will indemnify Borland against all liability, damages and
costs (including reasonable attorneys' fees) resulting from or related to an
Excluded Claim. This section 11 states Borland's entire liability and your
sole and exclusive remedy for third-party claims relating to the Product.

12. AUDIT. During the term of this License and for one (1) year
thereafter, upon reasonable notice and during normal business hours, Borland
or its outside auditors will have the right to enter your premises and
access your records and computer systems to verify that you have paid to
Borland the correct amounts owed under this License and determine whet
the Products are being used in accordance with the terms of this License
You will provide reasonable assistance to Borland in connection with this
provision. You agree to pay the cost of the audit if any underpayments
during the period covered by the audit amount to more than five per

her
.

cent (5%)
 the fees actually owed for that period.

.3 Termination for Cause. Borland may terminate this License if you
n by

reach is curable, you will have a grace period of thirty (30) days
ter such notice is served to cure the breach described therein. If the

or any

s

of

of

13. TERM AND TERMINATION.

13.1 Term. The term of this License will begin as of the date that you
receive the Product and will remain in effect perpetually unless terminated
under this Section 13.

13.2 Termination for Convenience. You may terminate this License for any
reason, or for no reason, by giving Borland five (5) days' written notice.

13
breach your obligations hereunder. Borland will effect such terminatio
giving you notice of termination, specifying therein the alleged breach. If
your b
af
breach is cured within the thirty (30) day grace period, then this License
will remain in effect; otherwise, this License will automatically terminate
upon the conclusion of the thirty (30) day grace period.

13.4 Effect of Termination. Upon the termination of this License f
reason the following terms shall apply: (a) all rights granted under this
License will immediately terminate and you must stop all use of the Product
and any Redistributables; (b) you must immediately pay to Borland all fees
and expenses accrued prior to the effective date of termination; (c) you
must return to Borland or destroy all copies of the Product provided to or
made by you, and will, within ten (10) days after the effective date of
termination, provide Borland with written certification that all such copie
have been returned or destroyed; (d) you must return to Borland all of its
other confidential information that you have received during the term of
this License; and (e) all provisions of this Agreement with the exception
the licenses granted in Sections 2, 3 and 4, will survive termination of
this License for any reason.

14. GENERAL PROVISIONS.

14.1 Canadian Transactions. If you are subject to Canadian law, you agree
to the following:

138

The parties hereto have expressly required that the present License and i
Exhibits be drawn up in the English language. / Les parties aux presentes
ont expressement exige que la presente Convention et ses Annexes soient
redigees en langue anglaise.

ts

may not

le,
of

.3 Governing Law; Venue and Jurisdiction. This License will be governed
d e with the laws of the United States and the

ate of California, without giving effect to any conflicts or choice of

Convention on the International Sale of Goods (if
plicable). Subject only to the provisions of Section 14.6, any legal

ate, located within the State of California, and in no other venue. Each

s

nnot be joined
th any dispute of any other person or entity in a lawsuit, arbitration or

f to enforce or prevent any breach of
ctions 2, 3, 4, 5 or 9 without posting a bond or other security, and may

t jurisdiction for such relief notwithstanding
e provisions of Section 14.3.

ees. In any action, suit or proceeding arising out of or
lating to this License, Borland, if it is the prevailing party, will be

14.2 Hazardous Uses. The Product is not intended for use, and you
use or allow others to use the Product, in connection with any application
requiring fail-safe performance such as the operation of nuclear power
facilities, air traffic control or navigation systems, weapons control
systems, life support systems, or any other system whose failure could lead
to injury, death, environmental damage or mass destruction. You agree that
Borland will have no liability of any nature, and you are solely responsib
for any expense, loss, injury or damage incurred as a result of such use
the Product.

14
by an construed in accordanc
St
laws principles that would require the application of the laws of a
different jurisdiction. The parties expressly exclude the application of
the 1980 United Nations
ap
action, suit or proceeding arising out of or relating to this License must
be instituted exclusively in a court of competent jurisdiction, federal or
st
party further irrevocably consents to personal jurisdiction and venue in,
and agrees to service of process issued or authorized by, any such court.

14.4 No Jury Trials; No Joinder. Each party hereby irrevocably waives it
right to a jury trial in any legal action, suit or proceeding between the
parties arising out of or relating to this License. A copy this License may
be filed with the court as written consent by both parties to a bench trial.
You agree that any dispute you may have against Borland ca
wi
any other proceeding, or resolved on a classwide basis.

14.5 Severability. If any provision of this Agreement is held to be
illegal, invalid or unenforceable for any reason, then such provision will
be enforced to the maximum extent permissible and the remainder of the
provisions of this Agreement will remain in full force and effect.

14.6 Equitable Relief. The parties acknowledge and agree that it is
impossible to measure in money the damages that will accrue to Borland by
reason of your breach of this Agreement and that such a breach will cause
irreparable harm to Borland. In addition to any other right or remedy
available at law or in equity Borland will be entitled to specific
performance or injunctive relie
Se
apply to any court of competen
th

14.7 Attorneys' F
re

139

entitled to recover from you its reasonable attorneys' fees and expenses in
addition to any other relief that may be awarded.

14.8 Notices. A notice that is required or permitted under this Agreement

st be in writing and may be delivered by facsimile, electronic mail, hand

ess

gate any of your obligations under this License, by operation
 law or otherwise (including by merger, sale of assets or consolidation),

l
assign

u are representing and warranting that you are not located in, under the

.11 U.S. Government Rights. The Product is a "commercial item" as that

.

 the
oduct with only those rights set forth in this License.

er

gned by

nd Borland regarding the specific license
ansaction described herein. No prior agreements, understandings,

expressly contained in this License can be used to alter or supplement its

mu
delivery, courier or mail. Notice will be deemed effective upon the earlier
of actual receipt by the intended recipient or five (5) days after deposit
with the U.S. Postal Service as certified or registered mail (postage
prepaid and return receipt requested) addressed to recipient at its addr
set forth on the first page above or as amended by notice pursuant to this
section.

14.9 Assignment. You may not assign this License or assign any of your
rights or dele
of
without Borland's prior written consent, which may be granted, conditioned
or withheld in Borland's sole discretion. Any attempted assignment you in
violation of this Section 14.10 will be void and will constitute a materia
breach of this Agreement. Notwithstanding the foregoing, Borland may
this License at any time in its sole discretion. Subject to the foregoing,
this Agreement will be binding upon and will inure to the benefit of the
parties and their respective successors and permitted assigns.

14.10 Export Control. You may not directly or indirectly transfer the
Product, including its documentation, to any country if such transfer would
be prohibited by applicable law, including the U.S. Export Administration
Act and the regulations issued thereunder. You agree to the foregoing and
yo
control of, or a national or resident of any such country. You will be
solely responsible for identifying and complying with all laws of any
jurisdiction outside of the United States regarding the import, export or
use of Products and technical data supplied by Borland. You will obtain at
your own expense all licenses, permits or approvals required by any
government to use the Product.

14
term is defined at 48 C.F.R. 2.101, consisting of "commercial computer
software" and "commercial computer software documentation" as such terms are
used in 48 C.F.R. 12.212. Consistent with 48 C.F.R. 12.212 and 48 C.F.R
227.7202-1 through 227.7202-4, all U.S. Government end users acquire
Pr

14.12 Waiver and Modifications. All waivers must be in writing. Any waiv
or failure to enforce a provision of this License on one occasion shall not
be deemed a waiver of any other provision or such provision on any other
occasion. This License may only be amended by a written document si
both parties.

14.13 Entire License. This License constitutes the entire, final and
exclusive agreement between you a
tr
statements, proposals or representations, written or oral, apply. No
written or oral statement, advertisement or product description not

140

terms. You may not rely on any representations or statements not contained
in this Agreement. Headings in this License are for reference only and have
 effect on any provision's meaning.

 below.

rland. You must agree to these terms and conditions in order to
stall and use the Product. If you do not agree with these terms and

no

If you have any questions about this License, please contact your Borland
authorized reseller or Borland.
If you agree to the terms and conditions of this License Agreement, please
place a check in the "I ACCEPT THE TERMS OF THE LICENSE AGREEMENT" box
This will be the legal equivalent of your signature on a written contract
and the terms of this license shall be a legally binding agreement between
you and Bo
in
conditions, you should place a check in the "I DO NOT ACCEPT THE TERMS OF
THE LICENSE AGREEMENT" box below to exit this installation process, as
Borland is unwilling to license the Product to you in such case, and you may
return the Product within ten (10) days after you first received it to
Borland or your Borland authorized reseller, along with its original
packaging and proof-of-purchase, for a full refund.

Borland Software Corporation
100 Enterprise Way
Scotts Valley, CA 95066-3249

141

142

	Chapter 1 Introduction
	1.1 Inspiration
	1.2 Objectives
	1.3 Intellectual property library
	1.3.1 Reusability
	1.3.2 Parameterisability
	1.3.3 Inherent low power characteristics
	1.3.4 Technology independent
	1.3.5 Tool flow independent
	1.3.6 Constructing an IP from macro-components
	1.3.7 Macro-Libraries
	1.3.7.1 Foundation
	1.3.7.2 Signal processing
	1.3.7.3 Communications
	1.3.7.4 Image processing
	1.3.7.5 Cache libraries

	1.3.8 Design Flow

	1.4 Electronic design automation – EDA
	1.5 Remote IP and EDA services
	1.5.1 Remote IP access
	1.5.2 Remote EDA access
	1.5.3 IP & EDA development framework

	1.6 Summary
	Chapter 1
	Chapter 2 Client-server architecture
	2.1 Programming language
	2.2 Application server
	2.3 Backend database
	2.4 CAD tools
	2.5 Deployment
	2.5.1 Hosting
	2.5.2 Client application

	2.6 Summary

	Chapter 1
	Chapter 3 Prerequisites
	3.1 Design patterns
	3.1.1 Façade design pattern
	3.1.1.1 Stand-alone client application

	3.1.2 Observer design pattern and model-view-controller
	3.1.3 Singleton design pattern
	3.1.4 Factory design pattern

	3.2 Serialization
	3.3 Enterprise Java Beans (EJB)
	3.3.1 Entity EJB
	3.3.1.1 Container managed persistence (CMP)
	3.3.1.2 Bean managed persistence (BMP)

	3.3.2 Session EJB
	3.3.2.1 Stateless
	3.3.2.2 Stateful

	3.3.3 EJB container

	3.4 Transactions
	3.5 Regular expressions
	3.6 Summary

	Chapter 1
	Chapter 4 Server-side IP-libraries
	4.1 Library file structure
	4.1.1 Macro-component directory structure
	4.1.2 Library manager

	4.2 Module dependency handling linker
	4.3 Component cataloguing
	4.4 Component categories
	4.4.1 Category modelling
	4.4.2 Category port modelling

	4.5 Component model
	4.5.1 Parameter modelling
	4.5.2 Port modelling
	4.5.3 Port width expression
	4.5.4 Verilog parser
	4.5.5 Assigning category to component model
	4.5.6 Cataloguing application

	4.6 Component documentation
	4.6.1 Entity based documentation model

	4.7 Macro-component database
	4.8 IP library EJB’s
	4.9 Summary

	Chapter 1
	Chapter 5 Client-side schematic capture tool
	5.1 Schematic capture environment
	5.1.1 Accessing macro-components
	5.1.2 Downloading ‘virtual’ macro-components
	5.1.2.1 Response performance

	5.1.3 Creating a design
	5.1.4 Parameterising components
	5.1.5 Hierarchial design
	5.1.6 Simulation and verification
	5.1.7 Simulation time

	5.2 Drawing schematic symbols
	5.2.1 Symbol geometry
	5.2.2 Symbol to macro-component binding
	5.2.3 Symbol bounding regions
	5.2.4 Nets
	5.2.5 Drawing controllers

	5.3 License management
	5.4 Summary

	Chapter 1
	Chapter 6 Client-server integration
	6.1 Client profile record
	6.2 Client-server session
	6.3 Project session
	6.3.1 Server project persistence

	6.4 EDA tool-flow integration
	6.4.1 Verification
	6.4.2 Module synthesis
	6.4.3 Running native applications in an enterprise environment
	6.4.3.1 Java Native Interface (JNI)
	6.4.3.2 Executing system commands

	6.4.4 Job farming

	6.5 Server-side EJBs
	6.6 Summary

	Chapter 7 Conclusions and future work
	7.1 Future work

	Chapter 1

